近年来,分数阶微分方程由于在各个领域的广泛应用而备受关注[1],关于分数阶微分方程解的存在性和唯一性已经有了丰硕的成果[2-7].文献[8]讨论了一类分数阶微分方程边值问题:
$ \left\{ {\begin{array}{*{20}{l}} {D_0^\alpha + u\left( t \right) = f\left( {t,u\left( t \right)} \right),t \in J: = \left[ {0,\infty } \right),}\\ {u\left( 0 \right) = 0,D_{{0^ + }}^{\alpha - 1}u\left( \infty \right) = {u_\infty },} \end{array}} \right. $ | (1) |
其中, D0+α是Riemann-Liouville型分数阶导数.假设f满足线性增长限制条件,应用Darbo不动点定理,得到边值问题(1) 解的存在性.受以上启发,本文主要研究以下Banach空间(E,‖·‖)中分数阶微分方程的边值问题:
$ \left\{ \begin{array}{l} D_0^\alpha + u\left( t \right) = f\left( {t,u\left( t \right),D_{{0^ + }}^{\alpha - 1}u\left( t \right)} \right),t \in J: = \left[ {0,\infty } \right)\\ u\left( 0 \right) = 0,D_{{0^ + }}^{\alpha - 1}u\left( \infty \right) = {u_\infty }, \end{array} \right. $ | (2) |
其中: 1<α≤2;f∈C(J×E×E, E); u∞∈E; D0+α-1u(∞):=
在下文中,用Dα、Dα-1表示α及α-1阶的Riemann-Liouville型分数阶导数,关于其定义和性质可参见文献[2].
记I∈J为紧区间,C(I, E)为Banach空间上的连续函数y:I→E,‖y‖C=
定义空间
$ X = \left\{ {u\left( t \right) \in C\left( {J,E} \right):\mathop {\sup }\limits_{t \in J} \frac{{{{\left\| {u\left( t \right)} \right\|}^{\rho 1}}}}{{{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}}} < \infty } \right\}, $ |
$ Y = \left\{ {u\left( t \right) \in X:{D^{\alpha - 1}}u\left( t \right) \in C\left( {J,E} \right),\mathop {\sup }\limits_{t \in j} {{\left\| {{D^{\alpha - 1}}u\left( t \right)} \right\|}^{\rho 2}} < \infty } \right\}. $ |
空间上的范数是
$ {\left\| u \right\|_X} = \mathop {\sup }\limits_{t \in J} \frac{{{{\left\| {u\left( t \right)} \right\|}^{\rho 1}}}}{{{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}}},{\left\| u \right\|_Y} = \max \left\{ {{{\left\| u \right\|}_X},\mathop {\sup }\limits_{t \in J} {{\left\| {{D^{\alpha - 1}}u\left( t \right)} \right\|}^{\rho 2}}} \right\}, $ |
其中: 0<ρi<1(i=1, 2),易证,(X, ‖·‖ X)和(Y, ‖·‖ Y)是Banach空间.
引理1[3] 若H⊂C(I, E)有界且等度连续,则α(H(t))在I上连续且
$ {\alpha _C}\left( H \right) = \mathop {\max }\limits_{t \in I} \alpha \left( {H\left( t \right)} \right),\alpha \left( {\left\{ {\int_I {x\left( t \right){\rm{d}}t:x \in H} } \right\}} \right) \le \int_I \alpha \left( {H\left( t \right)} \right){\rm{d}}t, $ |
其中: H(t)={x(t):x∈H}, t∈I.
引理2[3] 设D是Banach空间E上有界闭凸子集,若算子T:D→D是严格集压缩,则T在D内有不动点.
2 主要结果为应用Darbo不动点定理建立边值问题(2) 解的存在性结果,假设f满足如下条件:
(H1)存在非负函数a(t), b(t), c(t)∈C(J),0<ρi<1(i=1, 2) 使得
$ \left\| {f\left( {t,x,y} \right)} \right\| \le a\left( t \right)\;\;{\left\| x \right\|^{\rho 1}} + b\left( t \right)\;\;{\left\| y \right\|^{\rho 2}} + c\left( t \right),t \in J,x \in E, $ |
$ \int_0^\infty {\left[ {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}a\left( t \right) + b\left( t \right)} \right]{\rm{d}}t < \frac{{\Gamma \left( \alpha \right)}}{2},} \int_0^\infty {c\left( t \right){\rm{d}}t < + \infty .} $ |
(H2)对于r1, r2>0,I⊂J,f(t, x, y)在I×BE(θ, r1)×BE(θ, r2)上一致连续,θ是E中零元,
$ {B_E}\left( {\theta ,{r_1}} \right) = \left\{ {x \in E,\left\| x \right\| \le {r_1}} \right\},{B_E}\left( {\theta ,{r_2}} \right) = \left\{ {y \in E,\left\| y \right\| \le {r_2}} \right\}. $ |
(H3)存在非负函数h(t)∈L1(J),使得α(f(t, S, Dα-1S))≤h(t)α(S), t∈J,其中S是E的有界子集,
$ \int_0^\infty {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}h\left( t \right){\rm{d}}t < \Gamma \left( \alpha \right)} . $ |
引理3 若条件H1成立,则问题(2) 等价于积分方程
$ u\left( t \right) = \frac{{\left[ {{u_\infty } - \int_0^\infty {f\left( {t,u\left( t \right),{D^{\alpha - 1}}u\left( t \right)} \right){\rm{d}}t} } \right]}}{{\Gamma \left( \alpha \right)}}{t^{\alpha - 1}} + I_{{0^ + }}^\alpha + f\left( {t,u\left( t \right),D_{{0^ + }}^{\alpha - 1}u\left( t \right)} \right). $ |
证明过程参见文献[9]中引理3.1.
定义算子T:
$ Tu\left( t \right) = \frac{{\left[ {{u_\infty } - \int_0^\infty {f\left( {t,u\left( t \right),{D^{\alpha - 1}}u\left( t \right)} \right){\rm{d}}t} } \right]}}{{\Gamma \left( \alpha \right)}}{t^{\alpha - 1}} + \frac{1}{{\Gamma \left( \alpha \right)}}\int_0^t {{{\left( {t - s} \right)}^{\alpha - 1}}f\left( {s,u\left( s \right),D_{0^ + }^{\alpha - 1}u\left( s \right)} \right){\rm{d}}s.} $ |
则求解问题(2) 转化为求算子的不动点问题.
引理4 若条件H1和H2成立,则算子T:Y→Y有界连续.
证明 第一步:T:Y→Y.对于∀u(t)∈Y,则u(t)∈X,注意到,
$ {\int_0^\infty {f\left( {\mathit{t},\mathit{u}\left( t \right)} \right),{D^{\alpha - 1}}u\left( t \right){\rm{d}}t \le \left\| u \right\|} _Y}\int_0^\infty {\left[ {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}a\left( t \right) + b\left( t \right)} \right]} {\rm{d}}t + \int_0^\infty {c\left( t \right){\rm{d}}t} < \infty , $ |
类似于文献[8]中引理3.2的证明,可得Tu(t)∈X.又
$ {D^{\alpha - 1}}Tu\left( t \right) = {u_\infty } - \int_0^\infty {f\left( {\mathit{t},\mathit{u}\left( t \right)} \right),{D^{\alpha - 1}}u\left( t \right){\rm{d}}t + \int_0^t {f\left( {s,u\left( s \right)} \right),} } {D^{\alpha - 1}}u\left( s \right){\rm{d}}s, $ |
由f的连续性可得Dα-1Tu(t)∈C(J, E),且有
$ {\left\| {{D^{\alpha - 1}}u\left( t \right)} \right\|^{\rho 2}} \le {\left( {\left\| {{u_\infty }} \right\| + 2\left\{ {{{\left\| u \right\|}_Y}\int_0^\infty {\left[ {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}a\left( t \right) + b\left( t \right)} \right]} {\rm{d}}t + \int_0^\infty {c\left( t \right){\rm{d}}t} } \right\}} \right)^{\rho 2}}. $ |
第二步:证明T:Y→Y有界.注意到上式以及
$ {\left\| {\frac{{Tu\left( t \right)}}{{1 + {t^{^{\alpha - 1}}}}}} \right\|^{\rho 1}} \le {\left( {\frac{{{{\left\| u \right\|}_\infty }}}{{\Gamma \left( \alpha \right)}} + \frac{1}{{\Gamma \left( \alpha \right)}}\left\{ {\left[ {{{\left\| u \right\|}_Y}\int_0^\infty {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}a\left( t \right) + b\left( t \right)} } \right]{\rm{d}}t + \int_0^\infty {c\left( t \right){\rm{d}}t} } \right\}} \right)^{\rho 1}}. $ |
因此‖Tu(t)‖Y=max{
第三步:算子T:Y→Y连续.取{un}n=1∞ ⊂Y,u∈Y使得un→u(n→∞),则{un}n=1∞是Y的有界集,即存在M>0,使得‖un‖Y≤M,‖u‖Y≤M,则
$ \begin{array}{l} {\left\| {\frac{{T{u_n}\left( t \right)}}{{1 + {t^{^{\alpha - 1}}}}} - \frac{{Tu\left( t \right)}}{{1 + {t^{^{\alpha - 1}}}}}} \right\|^{\rho 1}} \\\le \left( {\frac{2}{{\Gamma \left( \alpha \right)}}\int_0^\infty {\left\| {f\left( {t,{u_n}\left( t \right),{\mathit{D}^{\alpha - 1}}{u_n}\left( t \right)} \right) - f\left( {t,u\left( t \right),{D^{\alpha - 1}}u\left( t \right)} \right)} \right\|{\rm{d}}t} } \right) ^{\rho 1} \le \\{\left( {\frac{{4M}}{{\Gamma \left( \alpha \right)}}\int_0^\infty {\left[ {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}a\left( t \right) + b\left( t \right)} \right]} {\rm{d}}t + \frac{4}{{\Gamma \left( \alpha \right)}}\int_0^\infty {c\left( t \right){\rm{d}}t} } \right)^{\rho 1}}, \end{array} $ |
$ {\left\| {{D^{\alpha - 1}}T{u_n}\left( t \right) - {D^{\alpha - 1}}Tu\left( t \right)} \right\|^{\rho 2}} \le 4M\int_0^\infty {\left[ {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}a\left( t \right) + b\left( t \right)} \right]} {\rm{d}}t + 4\int_0^\infty {c\left( t \right){\rm{d}}t} . $ |
由Lebesgue控制收敛定理可得算子T的连续性.
引理5 若条件H1成立,B是Y的有界子集,则
(a)
(b)对∀ε>0,∃N>0使得对t1, t2≥N, u(t)∈B,有
$ {\left\| {\frac{{Tu\left( {{t_1}} \right)}}{{1 + {t_1}^{\alpha - 1}}} - \frac{{Tu\left( {{t_2}} \right)}}{{1 + {t_2}^{\alpha - 1}}}} \right\|^{\rho 1}} < \varepsilon ,{\left\| {{D^{\alpha - 1}}Tu\left( {{t_1}} \right) - {D^{\alpha - 1}}Tu\left( {{t_2}} \right)} \right\|^{\rho 2}} < \varepsilon . $ |
证明 (a):由H1及B的有界性知存在K>0,使得对u∈B,
$ \int_0^\infty {\left\| {f\left( {t,u\left( t \right),{D^{\alpha - 1}}u\left( t \right)} \right)} \right\|{\rm{d}}t \le K} , $ | (3) |
取R使得‖u(t)‖Y≤R, ∀u∈B,令I=[a, b] ⊂J为紧区间,t1, t2∈[a, b],t1<t2则
$ \begin{array}{l} {\left\| {\frac{{Tu\left( {{t_2}} \right)}}{{1 + {t_2}^{\alpha - 1}}} - \frac{{Tu\left( {{t_1}} \right)}}{{1 + {t_1}^{\alpha - 1}}}} \right\|^{\rho 1}} \le \left\{ {\frac{{\left\| {{u_\infty }} \right\| + K}}{{\Gamma \left( \alpha \right)}}} \right.\left| {\frac{{t_2^{\alpha - 1}}}{{1 + t_2^{\alpha - 1}}} - \frac{{t_1^{\alpha - 1}}}{{1 + t_1^{\alpha - 1}}}} \right| + \frac{1}{{\Gamma \left( \alpha \right)}}\int_{{t_1}}^{{t_2}} {c\left( t \right){\rm{d}}t + } \\ \frac{R}{{\Gamma \left( \alpha \right)}}\int_{{t_1}}^{{t_2}} {\left[ {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}a\left( t \right) + b\left( t \right)} \right]{\rm{d}}t} + \\ {\left. {\frac{{R\left[ {{{\left( {1 + {b^{\alpha - 1}}} \right)}^{\rho 1}}{A_1} + {A_2}} \right] + {A_3}}}{{\Gamma \left( {\alpha + 1} \right)}}\left[ {\frac{{t_2^{\alpha - 1}}}{{1 + t_2^{\alpha - 1}}} - \frac{{t_1^{\alpha - 1}}}{{1 + t_1^{\alpha - 1}}} - \frac{{{{\left( {{t_2} - {t_1}} \right)}^\alpha }}}{{1 + {b^{\alpha - 1}}}}} \right]} \right\}^{^{\rho 1}}}, \end{array} $ |
其中: A1=
$ {\left\| {{D^{\alpha - 1}}Tu\left( {{t_2}} \right) - {D^{\alpha - 1}}Tu\left( {{t_1}} \right)} \right\|^{\rho 2}} \le {\left( {R\int_{{t_1}}^{{t_2}} {\left[ {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}a\left( t \right) + b\left( t \right)} \right]{\rm{d}}t + \int_{{t_1}}^{{t_2}} {c\left( t \right){\rm{d}}t} } } \right)^{\rho 2}}, $ |
故
(b):
类似于文献[8]中引理3.3的证明易知:∃N1>0,对t1, t2≥N1,
$ \left\| {\int_0^{{t_2}} {\frac{{{{\left( {{t_2} - s} \right)}^{\alpha - 1}}}}{{1 + {t_2}^{\alpha - 1}}}f\left( {s,u\left( s \right),{D^{\alpha - 1}}u\left( s \right)} \right){\rm{d}}s - \int_0^{{t_1}} {\frac{{{{\left( {{t_1} - s} \right)}^{\alpha - 1}}}}{{1 + {t_1}^{\alpha - 1}}}f\left( {s,u(s} \right),{D^{\alpha - 1}}u\left( s \right){\rm{d}}s} } } \right\| < \frac{{\Gamma \left( \alpha \right)\varepsilon }}{2}. $ |
又因为
$ \begin{array}{l} \left| {\frac{{t_2^{\alpha - 1}}}{{1 + t_2^{\alpha - 1}}} - \frac{{t_1^{\alpha - 1}}}{{1 + t_1^{\alpha - 1}}}} \right| \le \left( {1 - \frac{{t_2^{\alpha - 1}}}{{1 + t_2^{\alpha - 1}}}} \right) + \left( {1 - \frac{{t_1^{\alpha - 1}}}{{1 + t_1^{\alpha - 1}}}} \right) \le \\ \frac{{\Gamma \left( \alpha \right)}}{{\left\| {{u_\infty } - \int_0^\infty {f\left( {t,u\left( t \right),{D^{\alpha - 1}}u\left( t \right)} \right){\rm{d}}t} } \right\|}} \cdot \frac{\varepsilon }{2}, \end{array} $ |
因此, 对∀ε>0,当t1, t2≥N2时,
$ \begin{array}{l} {\left\| {{D^{\alpha - 1}}Tu\left( {{t_2}} \right) - {D^{\alpha - 1}}Tu\left( {{t_1}} \right)} \right\|^{\rho 2}} \le {\left\| {\int_0^{{t_2}} {f\left( {s,u\left( s \right),\\ {D^{\alpha - 1}}u\left( s \right)} \right)} {\rm{d}}s - \int_0^{{t_1}} {f\left( {s,u\left( s \right),{D^{\alpha - 1}}u\left( s \right)} \right)} {\rm{d}}s} \right\|^{\rho 2}} \le \\ {\left( {\int_{{N_3}}^{{t_2}} {\left\| {f\left( {s,u\left( s \right),{D^{\alpha - 1}}u\left( s \right)} \right)} \right\|} \;{\rm{d}}s + \int_{{N_3}}^{{t_1}} {\left\| {f\left( {s,u\left( s \right),{D^{\alpha - 1}}u\left( s \right)} \right)} \right\|} \;{\rm{ds}}} \right)^{\rho 2}} \le \\ {\left( {2\int_{{N_3}}^\infty {\left\| {f\left( {t,u\left( t \right),{D^{\alpha - 1}}u\left( t \right)} \right)} \right\|} \;{\rm{dt}}} \right)^{\rho 2}} < \varepsilon . \end{array} $ |
故对∀ε>0,取N=max{N2, N3}时, (b)得证.
引理6 若条件H1成立,B是Y的有界子集,则αY(TB)=
证明 对∀ε>0,存在划分TB=
由TB(t)=
同理可证
由引理5可知∀ε>0,∃N>0, 使得对t1, t2≥N,u∈B有
$ \left\| {\frac{{Tu\left( {{t_1}} \right)}}{{1 + {t_1}^{\alpha - 1}}} - \frac{{Tu\left( {{t_2}} \right)}}{{1 + {t_2}^{\alpha - 1}}}} \right\| < \varepsilon . $ | (4) |
定义TB在[0,N]上的限制TB[0, N],由引理1得
$ \begin{array}{l} {\alpha _Y}\left( {TB|{\;_{\left[ {0,N} \right]}}} \right) \le \max \left\{ {{\alpha _X}\left( {TB|{\;_{\left[ {0,N} \right]}}} \right),{\alpha _C}\left( {{D^{\alpha - 1}}TB|{\;_{\left[ {0,N} \right]}}} \right)} \right\} \le \\ \mathop {\sup }\limits_{t \in J} \left\{ {\alpha \left( {\frac{{{{\left\| {TB\left( t \right)} \right\|}^{\rho 1}}}}{{{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}}}} \right),\alpha {{\left\| {{D^{\alpha - 1}}TB\left( t \right)} \right\|}^{\rho 2}}} \right\}. \end{array} $ |
又注意到存在B的划分,使得B=
$ dia{m_X}\left( {T{B_i}|{\;_{\left[ {0,N} \right]}}} \right) < \mathop {\sup }\limits_{t \in J} \alpha \left( {\frac{{{{\left\| {TB\left( t \right)} \right\|}^{\rho 1}}}}{{{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}}}} \right) + \varepsilon ,i = 1,2, \cdots ,n, $ | (5) |
$ diam\left( {\left( {{D^{\alpha - 1}}T{B_i}} \right)|{\;_{\left[ {0,N} \right]}}} \right) < \mathop {\sup }\limits_{t \in J} \alpha \left( {{{\left\| {{D^{\alpha - 1}}TB\left( t \right)} \right\|}^{\rho 2}}} \right) + \varepsilon ,i = 1,2, \cdots ,n. $ | (6) |
则对∀Tu1, Tu2∈TBi, t≥N,应用(4) 和(5) 式有
$ \begin{array}{l} {\left\| {\frac{{T{u_1}\left( t \right)}}{{1 + {t^{\alpha - 1}}}} - \frac{{T{u_2}\left( t \right)}}{{1 + {t^{\alpha - 1}}}}} \right\|^{\rho 1}} \le \left( {\left\| {\frac{{T{u_1}\left( t \right)}}{{1 + {t^{\alpha - 1}}}} - \frac{{T{u_1}\left( N \right)}}{{1 + {N^{\alpha - 1}}}}} \right\| + \left\| {\frac{{T{u_2}\left( N \right)}}{{1 + {N^{\alpha - 1}}}} - \frac{{T{u_2}\left( N \right)}}{{1 + {N^{\alpha - 1}}}}} \right\| + } \right.\\ {\left. {\left\| {\frac{{T{u_2}\left( N \right)}}{{1 + {N^{\alpha - 1}}}} - \frac{{T{u_2}\left( t \right)}}{{1 + {t^{\alpha - 1}}}}} \right\|} \right)^{\rho 1}} \le {\left( {\left\| {\frac{{T{u_1}\left( N \right)}}{{1 + {N^{\alpha - 1}}}} - \frac{{T{u_2}\left( N \right)}}{{1 + {N^{\alpha - 1}}}}} \right\| + 2\varepsilon } \right)^{\rho 1}}. \end{array} $ |
同理可得‖Dα-1Tu1(t)-Dα-1Tu2(t)‖ρ2≤(‖Dα-1Tu1(N)-Dα-1Tu2(N)‖+2ε)ρ2.
又因TB=
$ {\alpha _Y}\left( {TB} \right) \le \mathop {\sup }\limits_{t \in J} \left\{ \alpha {\left( {\frac{{{{\left\| {TB\left( t \right)} \right\|}^{\rho 1}}}}{{{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}}}} \right),\alpha \left( {{{\left\| {{D^{\alpha - 1}}TB\left( t \right)} \right\|}^{\rho 2}}} \right)} \right\}. $ |
故
定理1 若条件H1~H3成立,则问题(2) 至少存在一个解.
证明 ① 取R≥max{
$ \begin{array}{l} \frac{{{{\left\| {Tu\left( t \right)} \right\|}^{\rho 1}}}}{{{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}}} \le {\left( {\frac{1}{{\Gamma \left( \alpha \right)}}\left[ {\left\| {{u_\infty }} \right\| + \int_0^\infty {\left\| {f\left( {t,u\left( t \right),{D^{\alpha - 1}}u\left( t \right)} \right)} \right\|{\rm{d}}t} } \right]} \right)^{\rho 1}} < \\ {\left( {\frac{{\left\| {{u_\infty }} \right\|}}{{\Gamma \left( \alpha \right)}} + \frac{2}{{\Gamma \left( \alpha \right)}}\left\{ {{{\left\| u \right\|}_Y}\int_0^\infty {\left[ {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}a\left( t \right) + b\left( t \right)} \right]} \;{\rm{d}}t + \int_0^\infty {c\left( t \right){\rm{d}}t} } \right\}} \right)^{^{\rho 1}}} \le \\ \frac{{\left\| {{u_\infty }} \right\|}}{{\Gamma \left( \alpha \right)}} + \frac{2}{{\Gamma \left( \alpha \right)}}\left\{ {{{\left\| u \right\|}_Y}\int_0^\infty {\left[ {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}a\left( t \right) + b\left( t \right)} \right]} \;{\rm{d}}t + \int_0^\infty {c\left( t \right){\rm{d}}t} } \right\} \le R. \end{array} $ |
$ {\left\| {{D^{\alpha - 1}}Tu\left( t \right)} \right\|^{\rho 2}} \le {\left( {\left\| {{u_\infty }} \right\| + 2\left\{ {{{\left\| u \right\|}_Y}\int_0^\infty {\left[ {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}a\left( t \right) + b\left( t \right)} \right]{\rm{d}}t + \int_0^\infty {} } } \right\}c\left( t \right){\rm{d}}t} \right)^{\rho 2}} \\ \le R. $ |
② 取D=
$ \begin{array}{l} {T_n}u\left( t \right): = \frac{{{u_\infty }}}{{\Gamma \left( \alpha \right)}}{t^{\alpha - 1}} - \frac{1}{{\Gamma \left( \alpha \right)}}\int_0^t {\left[ {{t^{\alpha - 1}} - {{\left( {t - s} \right)}^{\alpha - 1}}} \right]} f\left( {s,u\left( s \right),{D^{\alpha - 1}}u\left( s \right)} \right){\rm{d}}s - \\ \frac{1}{{\Gamma \left( \alpha \right)}}\int_t^n {{t^{\alpha - 1}}} f\left( {s,u\left( s \right),{D^{\alpha - 1}}u\left( s \right)} \right){\rm{d}}s, \end{array} $ |
$ {\left\| {\frac{{{T_n}u\left( t \right)}}{{1 + {t^{\alpha - 1}}}} - \frac{{{T_n}u\left( t \right)}}{{1 + {t^{\alpha - 1}}}}} \right\|^{\rho 1}} \le {\left( {\frac{1}{{\Gamma \left( \alpha \right)}}\left[ {R\int_n^\infty {\left[ {{{\left( {1 + {t^{^{\alpha - 1}}}} \right)}^{\rho 1}}a\left( t \right) + b\left( t \right)} \right]{\rm{d}}t + \int_n^\infty {c\left( t \right){\rm{d}}t} } } \right]} \right)^{\rho 1}}, $ |
$ {\left\| {{D^{\alpha - 1}}T{u_m}\left( t \right) - {D^{\alpha - 1}}Tu\left( t \right)} \right\|^{\rho 2}} \le {\left( {R\int_n^\infty {\left[ {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}a\left( t \right) + b\left( t \right)} \right]} {\rm{d}}t + \int_n^\infty {c\left( t \right){\rm{d}}t} } \right)^{\rho 2}}. $ |
当n→∞时,d(‖TnS(t)‖Y, ‖TS(t)‖Y)→0,由非紧性测度性质得:
$ \mathop {\lim }\limits_{n \to \infty } \alpha \left( {{{\left\| {{T_n}S\left( t \right)} \right\|}_{\;Y}}} \right) = \alpha \left( {\left\| {TS\left( t \right)} \right\|{\;_Y}} \right),t \in J. $ |
由引理5知
$ \begin{array}{l} \alpha \left( {\frac{{{{\left\| {{T_n}S\left( t \right)} \right\|}^{\rho 1}}}}{{{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}}}} \right) \le \left\{ {\frac{1}{{\Gamma \left( \alpha \right)}}\int_0^t {\alpha \left( {\left\{ {f\left( {t,u\left( t \right),{D^{\alpha - 1}}u\left( t \right)} \right):u\left( t \right) \in S} \right\}} \right)} {\rm{d}}t + } \right.\\ \left. {\frac{1}{{\Gamma \left( \alpha \right)}}\int_t^n {\alpha \left( {\left\{ {f\left( {t,u\left( t \right),{D^{\alpha - 1}}u\left( t \right)} \right):u\left( t \right) \in S} \right\}} \right)} {\rm{d}}t} \right\} \le \\ \frac{1}{{\Gamma \left( \alpha \right)}}{\int_0^n {\left( {1 + {t^{\alpha - 1}}} \right)} ^{\rho 1}}h\left( t \right)\alpha \left( {\frac{{{{\left\| {S\left( t \right)} \right\|}^{\rho 1}}}}{{{{\left( {1 + {t^{\alpha - 1}}} \right)}^{^{\rho 1}}}}}} \right){\rm{d}}t \le \\ \frac{1}{{\Gamma \left( \alpha \right)}}{\int_0^n {\left( {1 + {t^{\alpha - 1}}} \right)} ^{\rho 1}}h\left( t \right){\rm{d}}t{\alpha _Y}\left( S \right) \le \frac{1}{{\Gamma \left( \alpha \right)}}{\int_0^\infty {\left( {1 + {t^{\alpha - 1}}} \right)} ^{\rho 1}}h\left( t \right){\rm{d}}t{\alpha _Y}\left( S \right), \end{array} $ |
注意到(1+tα-1)ρ1>1,1/Γ(α)>1,
$ \begin{array}{l} \alpha \left( {{{\left\| {{D^{\alpha - 1}}{T_n}S\left( t \right)} \right\|}^{\rho 2}}} \right) \le \int_t^n {\alpha \left( {\left\{ {f\left( {t,u\left( t \right),{D^{\alpha - 1}}u\left( t \right)} \right):u\left( t \right) \in S} \right\}} \right)} {\rm{d}}t \le \\ \int_t^n {h\left( t \right)\alpha } \left( {{{\left\| {{D^{\alpha - 1}}S\left( t \right)} \right\|}^{\rho 2}}} \right){\rm{d}}t \le \int_0^\infty {h\left( t \right){\rm{d}}t{\alpha _Y}} \left( S \right) \le \frac{1}{{\Gamma \left( \alpha \right)}}{\int_0^\infty {\left( {1 + {t^{\alpha - 1}}} \right)} ^{\rho 1}}h\left( t \right){\rm{d}}t{\alpha _Y}\left( S \right). \end{array} $ |
令λ=
下面考虑问题(2) 中u∞=0,且定理1中f的次线性条件改为超线性条件时,则有定理2.
定理2 若f满足(H0), 存在非负函数a(t), b(t)∈C(J),ρi>1(i=1, 2), 使得
$ \left\| {f\left( {t,x,y} \right)} \right\| \le a\left( t \right)\;\;{\left\| x \right\|^{\rho 1}} + b\left( t \right)\;\left\| y \right\|{\;^{\rho 2}},t \in J,x \in E, $ |
$ \int_0^\infty {\left[ {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}a\left( t \right) + b\left( t \right)} \right]{\rm{d}}t < \Gamma \left( \alpha \right)} , $ |
且同时满足H2和H3,则问题(2) 至少存在一个解.
证明过程类似前定理,只需取ρ=max{ρ1, ρ2},0<R<
定义空间E=l∞={u=(u1, u2, …, un, …):
$ \left\{ \begin{array}{l} {D^{3/2}}{u_n}\left( t \right) = \frac{{t{{\left| {{u_n}\left( t \right)} \right|}^{1/2}}}}{{8{{\rm{e}}^{{t^2}}}{{\left( {1 + \sqrt t } \right)}^{1/2}}}} + \frac{{\sqrt {\left| {\sin {{\left( {{D^{1/2}}{u_{n + 1}}\left( t \right)} \right)}^{2/3}}} \right|} }}{{16{n^2}\left( {9 + {t^2}} \right)}},\\ {u_n}\left( 0 \right) = 0,{D^{1/2}}{u_n}\left( \infty \right) = {u_{n\infty }}, \end{array} \right. $ | (7) |
其中:t∈[0, ∞); α=
$ {f_n}\left( {t,x,y} \right) = \frac{{t{{\left| {{x_n}} \right|}^{1/2}}}}{{8{{\rm{e}}^{{t^2}}}{{\left( {1 + \sqrt t } \right)}^{1/2}}}} + \frac{{\sqrt {\left| {\sin y_{n + 1}^{2/3}} \right|} }}{{16{n^2}\left( {9 + {t^2}} \right)}}. $ |
显然f(t, x, y)∈C(J×E×E, E).注意到
$ \left\| {\;{{\left| x \right|}^{1/2}}\;} \right\| = \mathop {\sup }\limits_n \left| {\;\left| {{x_n}} \right|{\;^{1/2}}} \right| = \mathop {\sup }\limits_n \left| {{x_n}} \right|{\;^{1/2}} = {\left( {\mathop {\sup }\limits_n \left| {{x_n}} \right|\;} \right)^{^{1/2}}} = {\left\| x \right\|^{^{1/2}}}, $ |
$ \left\| {f\left( {t,x,y} \right)} \right\| \le \frac{t}{{8{{\rm{e}}^{{t^2}}}{{\left( {1 + \sqrt t } \right)}^{1/2}}}}{\left\| x \right\|^{^{1/2}}} + \frac{1}{{16\left( {9 + {t^2}} \right)}}{\left\| y \right\|^{1/3}}, $ |
且
故取a(t)=
对于H3,记f=f(1)+f(2),其中fn(1)=
下证对任一有界集D⊂E,α(f(2)(t, x, D))=0.取有界集{y(m)} E,即‖y(m)‖≤M,m=1, 2, ….其中, y(m)=(y1(m), y2(m), …yn(m), …).固定某一t∈J, x∈E,
$ \left| {f_n^{\left( 2 \right)}\left( {t,x,{y^{\left( m \right)}}} \right)} \right| \le \frac{{{M^{1/3}}}}{{144{n^2}}}, $ | (8) |
所以{fn(2)(t, x, y(m))}有界.利用对角线方法,选取{y(mi)} {y(m)},使得当i→∞时,
$ f_n^{\left( 2 \right)}\left( {t,x,{y^{\left( {{m_i}} \right)}}} \right) \to {w_n}. $ | (9) |
由(8) 式可知
$ \left| {{w_n}} \right| \le \frac{{{M^{1/3}}}}{{144{n^2}}},n = 1,2, \cdots , $ | (10) |
所以w={w1, w2, …, wn, …}∈E.由(8) 和(10) 式知,对∀ε1>0,∃n>N时, 有
$ \left| {f_n^{\left( 2 \right)}\left( {t,x,{y^{\left( {{m_i}} \right)}}} \right)} \right| < {\varepsilon _1},\left| {{w_n}} \right| \le {\varepsilon _1},i = 1,2, \cdots . $ | (11) |
由(9) 式知, 对∀ε>0,∃K>0,使得当i>K时,
$ \left| {f_n^{\left( 2 \right)}\left( {t,x,{y^{\left( {{m_i}} \right)}}} \right) - {w_n}} \right| < \varepsilon ,n = 1,2, \cdots ,N. $ | (12) |
由(11) 和(12) 式易得‖f(2)(t, x, y(m))-w‖≤ε,即当i→∞时,‖f(2)(t, x, y(m))-w‖→0.所以对D⊂E,f(2)(t, x, D)是相对紧集.故α(f(2)(t, x, D))=0.因此对任一有界集S⊂E,有
$ \alpha \left( {f\left( {t,S,{D^{\alpha - 1}}S} \right)} \right) \le \alpha \left( {{f^{\left( 1 \right)}}\left( {t,S,{D^{\alpha - 1}}S} \right)} \right) = \frac{{\alpha \left( S \right)}}{{8{t^{ - 1}}{{\rm{e}}^{{t^2}}}{{\left( {1 + \sqrt t } \right)}^{1/2}}}}. $ |
又因为
由定理1可知问题(7) 至少存在一个解.
[1] |
SABATIER J, AGRAWAL O P, TENREIRO M J A. Advances in fractional calculus[M]. Nether-Lands: Springer, 2007.
( ![]() |
[2] |
MA D X. Positive solutions of multi-point boundary value problem of fractional differential equation[J]. Arab journal of mathematical sciences, 2015, 21(2): 225-236. DOI:10.1016/j.ajmsc.2014.11.001 ( ![]() |
[3] |
GUO D, LAKSHMIKANTHAM V, LIU X. Nonlinear integral equations in abstract space[M]. Dordr-echt: Kluwer Academic Publishers, 2013.
( ![]() |
[4] |
WANG J R, ZHANG Y. A class of nonlinear differential equations with fractional integrable impulses[J]. Commun Nonlinear Sci Numer Simul, 2014, 19(9): 3001-3010. DOI:10.1016/j.cnsns.2014.01.016 ( ![]() |
[5] |
LIU Z H, LI X W. Existence and uniqueness of solutions for the nonlinear impulsive fractional differen-tial equation[J]. Communications in nonlinear science and numerical simulation, 2013, 18(6): 1362-1373. DOI:10.1016/j.cnsns.2012.10.010 ( ![]() |
[6] |
王勇. 非线性分数阶微分方程积分边值问题的正解[J]. 应用数学, 2016, 29(1): 1-6. DOI:10.3879/j.issn.1000-0887.2016.01.001 ( ![]() |
[7] |
刘东利, 杨军, 崔更新. 高阶分数阶微分方程边值问题正解的存在性[J]. 郑州大学学报(理学版), 2014, 46(1): 16-20. ( ![]() |
[8] |
SU X. Solutions to boundary value problem of fractional order on unbounded domains in a Banach space[J]. Nonlinear analysis, 2011, 74(8): 2844-2852. DOI:10.1016/j.na.2011.01.006 ( ![]() |
[9] |
SU X, ZHANG S. Unbounded solutions to a boundary value problem of fractional order on the half-line[J]. Computers and mathematics with applications, 2011, 61(4): 1079-1087. DOI:10.1016/j.camwa.2010.12.058 ( ![]() |