郑州大学学报(理学版)  2017, Vol. 49 Issue (2): 7-13  DOI: 10.13705/j.issn.1671-6841.2016210

引用本文  

蔡宁宁, 苏新卫, 张淑琴. 一类分数阶微分方程边值问题解的存在性[J]. 郑州大学学报(理学版), 2017, 49(2): 7-13.
CAI Ningning, SU Xinwei, ZHANG Shuqin. Existence of Solutions to a Boundary Value Problem of Fractional Differential Equations[J]. Journal of Zhengzhou University(Natural Science Edition), 2017, 49(2): 7-13.

基金项目

国家自然科学基金项目(11371364)

通信作者

作者简介

蔡宁宁(1991—),女,河北邯郸人,硕士研究生,主要从事分数阶微分方程理论研究,E-mail:kuangdacnn@163.com

文章历史

收稿日期:2016-07-25
一类分数阶微分方程边值问题解的存在性
蔡宁宁 , 苏新卫 , 张淑琴     
中国矿业大学(北京) 理学院 北京 100083
摘要:将一类分数阶微分方程边值问题转化为等价的积分方程,通过构造特殊的Banach空间,应用Kuratowski非紧性测度的性质及Darbo不动点定理,得到了在无穷区间上分数阶微分方程解的存在性结果,并通过具体例子说明了主要结果.
关键词分数阶微分方程    边值问题    Banach空间    非紧性测度    
Existence of Solutions to a Boundary Value Problem of Fractional Differential Equations
CAI Ningning , SU Xinwei , ZHANG Shuqin     
Department of Mathematics, China University of Mining and Technology, Beijing 100083, China
Abstract: The existence of solutions to a boundary value problem of fractional differential equations on the half-axis in a Banach space was studied.The boundary value problem was transformed into an equivalent integral equation. By the properties of the Kuratowski noncompactness measure and Darbo's fixed point theorem, the existence of solutions of boundary value problem were proved. An example illustrating the main result was also given.
Key words: fractional differential equation    boundary value problem    Banach space    noncompactness measure    
0 引言

近年来,分数阶微分方程由于在各个领域的广泛应用而备受关注[1],关于分数阶微分方程解的存在性和唯一性已经有了丰硕的成果[2-7].文献[8]讨论了一类分数阶微分方程边值问题:

$ \left\{ {\begin{array}{*{20}{l}} {D_0^\alpha + u\left( t \right) = f\left( {t,u\left( t \right)} \right),t \in J: = \left[ {0,\infty } \right),}\\ {u\left( 0 \right) = 0,D_{{0^ + }}^{\alpha - 1}u\left( \infty \right) = {u_\infty },} \end{array}} \right. $ (1)

其中, D0+α是Riemann-Liouville型分数阶导数.假设f满足线性增长限制条件,应用Darbo不动点定理,得到边值问题(1) 解的存在性.受以上启发,本文主要研究以下Banach空间(E,‖·‖)中分数阶微分方程的边值问题:

$ \left\{ \begin{array}{l} D_0^\alpha + u\left( t \right) = f\left( {t,u\left( t \right),D_{{0^ + }}^{\alpha - 1}u\left( t \right)} \right),t \in J: = \left[ {0,\infty } \right)\\ u\left( 0 \right) = 0,D_{{0^ + }}^{\alpha - 1}u\left( \infty \right) = {u_\infty }, \end{array} \right. $ (2)

其中: 1<α≤2;fC(J×E×E, E); uE; D0+α-1u(∞):=$\mathop {\lim }\limits_{t \to \infty } $ D0+α-1u(t); D0+αD0+α-1是Riemann-Liouville型分数阶导数.不同于[8],本文中讨论的函数fu(t)的分数阶导数D0+α-1u(t)有关,假设f满足次线性和超线性增长限制条件,通过构造特殊的Banach空间,应用Darbo不动点定理得到方程(2) 解的存在性.

1 预备知识

在下文中,用DαDα-1表示αα-1阶的Riemann-Liouville型分数阶导数,关于其定义和性质可参见文献[2].

IJ为紧区间,C(I, E)为Banach空间上的连续函数y:IE,‖yC=$\mathop {\sup }\limits_{t \in J} $y(t)‖. ααCαXαY分别为空间EC(I, E),XY上的Kuratowski非紧性测度.

定义空间

$ X = \left\{ {u\left( t \right) \in C\left( {J,E} \right):\mathop {\sup }\limits_{t \in J} \frac{{{{\left\| {u\left( t \right)} \right\|}^{\rho 1}}}}{{{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}}} < \infty } \right\}, $
$ Y = \left\{ {u\left( t \right) \in X:{D^{\alpha - 1}}u\left( t \right) \in C\left( {J,E} \right),\mathop {\sup }\limits_{t \in j} {{\left\| {{D^{\alpha - 1}}u\left( t \right)} \right\|}^{\rho 2}} < \infty } \right\}. $

空间上的范数是

$ {\left\| u \right\|_X} = \mathop {\sup }\limits_{t \in J} \frac{{{{\left\| {u\left( t \right)} \right\|}^{\rho 1}}}}{{{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}}},{\left\| u \right\|_Y} = \max \left\{ {{{\left\| u \right\|}_X},\mathop {\sup }\limits_{t \in J} {{\left\| {{D^{\alpha - 1}}u\left( t \right)} \right\|}^{\rho 2}}} \right\}, $

其中: 0<ρi<1(i=1, 2),易证,(X, ‖·‖ X)和(Y, ‖·‖ Y)是Banach空间.

引理1[3]   若HC(I, E)有界且等度连续,则α(H(t))在I上连续且

$ {\alpha _C}\left( H \right) = \mathop {\max }\limits_{t \in I} \alpha \left( {H\left( t \right)} \right),\alpha \left( {\left\{ {\int_I {x\left( t \right){\rm{d}}t:x \in H} } \right\}} \right) \le \int_I \alpha \left( {H\left( t \right)} \right){\rm{d}}t, $

其中: H(t)={x(t):xH}, tI.

引理2[3]  设D是Banach空间E上有界闭凸子集,若算子T:DD是严格集压缩,则TD内有不动点.

2 主要结果

为应用Darbo不动点定理建立边值问题(2) 解的存在性结果,假设f满足如下条件:

(H1)存在非负函数a(t), b(t), c(t)∈C(J),0<ρi<1(i=1, 2) 使得

$ \left\| {f\left( {t,x,y} \right)} \right\| \le a\left( t \right)\;\;{\left\| x \right\|^{\rho 1}} + b\left( t \right)\;\;{\left\| y \right\|^{\rho 2}} + c\left( t \right),t \in J,x \in E, $
$ \int_0^\infty {\left[ {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}a\left( t \right) + b\left( t \right)} \right]{\rm{d}}t < \frac{{\Gamma \left( \alpha \right)}}{2},} \int_0^\infty {c\left( t \right){\rm{d}}t < + \infty .} $

(H2)对于r1, r2>0,IJf(t, x, y)在I×BE(θ, r1BE(θ, r2)上一致连续,θE中零元,

$ {B_E}\left( {\theta ,{r_1}} \right) = \left\{ {x \in E,\left\| x \right\| \le {r_1}} \right\},{B_E}\left( {\theta ,{r_2}} \right) = \left\{ {y \in E,\left\| y \right\| \le {r_2}} \right\}. $

(H3)存在非负函数h(t)∈L1(J),使得α(f(t, S, Dα-1S))≤h(t)α(S), tJ,其中SE的有界子集,

$ \int_0^\infty {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}h\left( t \right){\rm{d}}t < \Gamma \left( \alpha \right)} . $

引理3  若条件H1成立,则问题(2) 等价于积分方程

$ u\left( t \right) = \frac{{\left[ {{u_\infty } - \int_0^\infty {f\left( {t,u\left( t \right),{D^{\alpha - 1}}u\left( t \right)} \right){\rm{d}}t} } \right]}}{{\Gamma \left( \alpha \right)}}{t^{\alpha - 1}} + I_{{0^ + }}^\alpha + f\left( {t,u\left( t \right),D_{{0^ + }}^{\alpha - 1}u\left( t \right)} \right). $

证明过程参见文献[9]中引理3.1.

定义算子T

$ Tu\left( t \right) = \frac{{\left[ {{u_\infty } - \int_0^\infty {f\left( {t,u\left( t \right),{D^{\alpha - 1}}u\left( t \right)} \right){\rm{d}}t} } \right]}}{{\Gamma \left( \alpha \right)}}{t^{\alpha - 1}} + \frac{1}{{\Gamma \left( \alpha \right)}}\int_0^t {{{\left( {t - s} \right)}^{\alpha - 1}}f\left( {s,u\left( s \right),D_{0^ + }^{\alpha - 1}u\left( s \right)} \right){\rm{d}}s.} $

则求解问题(2) 转化为求算子的不动点问题.

引理4  若条件H1和H2成立,则算子T:YY有界连续.

证明  第一步:T:YY.对于∀u(t)∈Y,则u(t)∈X,注意到,

$ {\int_0^\infty {f\left( {\mathit{t},\mathit{u}\left( t \right)} \right),{D^{\alpha - 1}}u\left( t \right){\rm{d}}t \le \left\| u \right\|} _Y}\int_0^\infty {\left[ {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}a\left( t \right) + b\left( t \right)} \right]} {\rm{d}}t + \int_0^\infty {c\left( t \right){\rm{d}}t} < \infty , $

类似于文献[8]中引理3.2的证明,可得Tu(t)∈X.又

$ {D^{\alpha - 1}}Tu\left( t \right) = {u_\infty } - \int_0^\infty {f\left( {\mathit{t},\mathit{u}\left( t \right)} \right),{D^{\alpha - 1}}u\left( t \right){\rm{d}}t + \int_0^t {f\left( {s,u\left( s \right)} \right),} } {D^{\alpha - 1}}u\left( s \right){\rm{d}}s, $

f的连续性可得Dα-1Tu(t)∈C(J, E),且有

$ {\left\| {{D^{\alpha - 1}}u\left( t \right)} \right\|^{\rho 2}} \le {\left( {\left\| {{u_\infty }} \right\| + 2\left\{ {{{\left\| u \right\|}_Y}\int_0^\infty {\left[ {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}a\left( t \right) + b\left( t \right)} \right]} {\rm{d}}t + \int_0^\infty {c\left( t \right){\rm{d}}t} } \right\}} \right)^{\rho 2}}. $

第二步:证明T:YY有界.注意到上式以及

$ {\left\| {\frac{{Tu\left( t \right)}}{{1 + {t^{^{\alpha - 1}}}}}} \right\|^{\rho 1}} \le {\left( {\frac{{{{\left\| u \right\|}_\infty }}}{{\Gamma \left( \alpha \right)}} + \frac{1}{{\Gamma \left( \alpha \right)}}\left\{ {\left[ {{{\left\| u \right\|}_Y}\int_0^\infty {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}a\left( t \right) + b\left( t \right)} } \right]{\rm{d}}t + \int_0^\infty {c\left( t \right){\rm{d}}t} } \right\}} \right)^{\rho 1}}. $

因此‖Tu(t)‖Y=max{$\mathop {\sup }\limits_{t \in J}\frac{{{\left\| Tu\left( t \right) \right\|}^{{{\rho }_{1}}}}}{\left( 1+{{t}^{\alpha -1}} \right)}$, $\mathop {\sup }\limits_{t \in J} $Dα-1u(t)‖ρ2}<∞.

第三步:算子T:YY连续.取{un}n=1YuY使得unu(n→∞),则{un}n=1Y的有界集,即存在M>0,使得‖unYM,‖uYM,则

$ \begin{array}{l} {\left\| {\frac{{T{u_n}\left( t \right)}}{{1 + {t^{^{\alpha - 1}}}}} - \frac{{Tu\left( t \right)}}{{1 + {t^{^{\alpha - 1}}}}}} \right\|^{\rho 1}} \\\le \left( {\frac{2}{{\Gamma \left( \alpha \right)}}\int_0^\infty {\left\| {f\left( {t,{u_n}\left( t \right),{\mathit{D}^{\alpha - 1}}{u_n}\left( t \right)} \right) - f\left( {t,u\left( t \right),{D^{\alpha - 1}}u\left( t \right)} \right)} \right\|{\rm{d}}t} } \right) ^{\rho 1} \le \\{\left( {\frac{{4M}}{{\Gamma \left( \alpha \right)}}\int_0^\infty {\left[ {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}a\left( t \right) + b\left( t \right)} \right]} {\rm{d}}t + \frac{4}{{\Gamma \left( \alpha \right)}}\int_0^\infty {c\left( t \right){\rm{d}}t} } \right)^{\rho 1}}, \end{array} $
$ {\left\| {{D^{\alpha - 1}}T{u_n}\left( t \right) - {D^{\alpha - 1}}Tu\left( t \right)} \right\|^{\rho 2}} \le 4M\int_0^\infty {\left[ {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}a\left( t \right) + b\left( t \right)} \right]} {\rm{d}}t + 4\int_0^\infty {c\left( t \right){\rm{d}}t} . $

由Lebesgue控制收敛定理可得算子T的连续性.

引理5  若条件H1成立,BY的有界子集,则

(a) $\left\{ \frac{TB\left( t \right)}{1+{{t}^{\alpha -1}}} \right\}$和{Dα-1TB(t)}在任意紧区间上是等度连续的;

(b)对∀ε>0,∃N>0使得对t1, t2N, u(t)∈B,有

$ {\left\| {\frac{{Tu\left( {{t_1}} \right)}}{{1 + {t_1}^{\alpha - 1}}} - \frac{{Tu\left( {{t_2}} \right)}}{{1 + {t_2}^{\alpha - 1}}}} \right\|^{\rho 1}} < \varepsilon ,{\left\| {{D^{\alpha - 1}}Tu\left( {{t_1}} \right) - {D^{\alpha - 1}}Tu\left( {{t_2}} \right)} \right\|^{\rho 2}} < \varepsilon . $

证明   (a):由H1B的有界性知存在K>0,使得对uB

$ \int_0^\infty {\left\| {f\left( {t,u\left( t \right),{D^{\alpha - 1}}u\left( t \right)} \right)} \right\|{\rm{d}}t \le K} , $ (3)

R使得‖u(t)‖YR, ∀uB,令I=[a, b] ⊂J为紧区间,t1, t2∈[a, b],t1t2

$ \begin{array}{l} {\left\| {\frac{{Tu\left( {{t_2}} \right)}}{{1 + {t_2}^{\alpha - 1}}} - \frac{{Tu\left( {{t_1}} \right)}}{{1 + {t_1}^{\alpha - 1}}}} \right\|^{\rho 1}} \le \left\{ {\frac{{\left\| {{u_\infty }} \right\| + K}}{{\Gamma \left( \alpha \right)}}} \right.\left| {\frac{{t_2^{\alpha - 1}}}{{1 + t_2^{\alpha - 1}}} - \frac{{t_1^{\alpha - 1}}}{{1 + t_1^{\alpha - 1}}}} \right| + \frac{1}{{\Gamma \left( \alpha \right)}}\int_{{t_1}}^{{t_2}} {c\left( t \right){\rm{d}}t + } \\ \frac{R}{{\Gamma \left( \alpha \right)}}\int_{{t_1}}^{{t_2}} {\left[ {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}a\left( t \right) + b\left( t \right)} \right]{\rm{d}}t} + \\ {\left. {\frac{{R\left[ {{{\left( {1 + {b^{\alpha - 1}}} \right)}^{\rho 1}}{A_1} + {A_2}} \right] + {A_3}}}{{\Gamma \left( {\alpha + 1} \right)}}\left[ {\frac{{t_2^{\alpha - 1}}}{{1 + t_2^{\alpha - 1}}} - \frac{{t_1^{\alpha - 1}}}{{1 + t_1^{\alpha - 1}}} - \frac{{{{\left( {{t_2} - {t_1}} \right)}^\alpha }}}{{1 + {b^{\alpha - 1}}}}} \right]} \right\}^{^{\rho 1}}}, \end{array} $

其中: A1=$\mathop {\max }\limits_{t \in \left[ {a,b} \right]}$a(t);A2=$\mathop {\max }\limits_{t \in \left[ {a,b} \right]}$b(t);A3=$\mathop {\max }\limits_{t \in \left[ {a,b} \right]}$c(t).

$ {\left\| {{D^{\alpha - 1}}Tu\left( {{t_2}} \right) - {D^{\alpha - 1}}Tu\left( {{t_1}} \right)} \right\|^{\rho 2}} \le {\left( {R\int_{{t_1}}^{{t_2}} {\left[ {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}a\left( t \right) + b\left( t \right)} \right]{\rm{d}}t + \int_{{t_1}}^{{t_2}} {c\left( t \right){\rm{d}}t} } } \right)^{\rho 2}}, $

$\left\{ \frac{TB\left( t \right)}{1+{{t}^{\alpha -1}}} \right\}$和{Dα-1TB(t)}在[a, b]上等度连续性得证.

(b):${\left\| {\frac{{Tu\left( {{t_2}} \right)}}{{1 + t_2^{\alpha - 1}}} - \frac{{Tu\left( {{t_1}} \right)}}{{1 + t_1^{\alpha - 1}}}} \right\|^{{\rho _1}}} \le \frac{{\left\| {{u_\infty } - \int_0^\infty {f\left( {t,u\left( t \right),{D^{\alpha - 1}}u\left( t \right)} \right){\rm{d}}t} } \right\|}}{{\Gamma \left( \alpha \right)}}\left| {\frac{{t_2^{\alpha - 1}}}{{1 + t_2^{\alpha - 1}}} - \frac{{t_1^{\alpha - 1}}}{{1 + t_1^{\alpha - 1}}}} \right| + $${\left( {\frac{1}{{\Gamma \left( \alpha \right)}}\left\| {\int_0^{{t_2}} {\frac{{{{\left( {{t_2} - s} \right)}^{\alpha - 1}}}}{{1 + t_2^{\alpha - 1}}}f\left( {s,u\left( s \right),{D^{\alpha - 1}}u\left( s \right)} \right){\rm{d}}s - \int_0^{{t_1}} {\frac{{{{\left( {{t_1} - s} \right)}^{\alpha - 1}}}}{{1 + t_1^{\alpha - 1}}}f\left( {s,u\left( s \right),{D^{\alpha - 1}}u\left( s \right)} \right){\rm{d}}s} } } \right\|} \right)^{{\rho _1}}},$

类似于文献[8]中引理3.3的证明易知:∃N1>0,对t1, t2N1,

$ \left\| {\int_0^{{t_2}} {\frac{{{{\left( {{t_2} - s} \right)}^{\alpha - 1}}}}{{1 + {t_2}^{\alpha - 1}}}f\left( {s,u\left( s \right),{D^{\alpha - 1}}u\left( s \right)} \right){\rm{d}}s - \int_0^{{t_1}} {\frac{{{{\left( {{t_1} - s} \right)}^{\alpha - 1}}}}{{1 + {t_1}^{\alpha - 1}}}f\left( {s,u(s} \right),{D^{\alpha - 1}}u\left( s \right){\rm{d}}s} } } \right\| < \frac{{\Gamma \left( \alpha \right)\varepsilon }}{2}. $

又因为$\mathop {\lim }\limits_{t \to \infty } {\mkern 1mu} \frac{{{t^{\alpha - 1}}}}{{1 + {t^{\alpha - 1}}}}$=1,∃N2>N1使得对∀t1, t2N2

$ \begin{array}{l} \left| {\frac{{t_2^{\alpha - 1}}}{{1 + t_2^{\alpha - 1}}} - \frac{{t_1^{\alpha - 1}}}{{1 + t_1^{\alpha - 1}}}} \right| \le \left( {1 - \frac{{t_2^{\alpha - 1}}}{{1 + t_2^{\alpha - 1}}}} \right) + \left( {1 - \frac{{t_1^{\alpha - 1}}}{{1 + t_1^{\alpha - 1}}}} \right) \le \\ \frac{{\Gamma \left( \alpha \right)}}{{\left\| {{u_\infty } - \int_0^\infty {f\left( {t,u\left( t \right),{D^{\alpha - 1}}u\left( t \right)} \right){\rm{d}}t} } \right\|}} \cdot \frac{\varepsilon }{2}, \end{array} $

因此, 对∀ε>0,当t1, t2N2时,${{\left\| \frac{Tu\left( {{t}_{2}} \right)}{1+t_{2}^{\alpha -1}}-\frac{Tu\left( {{t}_{1}} \right)}{1+t_{1}^{\alpha -1}} \right\|}^{{{\rho }_{1}}}}$ε,且由(3) 式知∃N3>0,使得对∀uB$\int_{{N_3}}^\infty {} $f(t, u(t), Dα-1u(t))‖dt$\frac{\varepsilon }{2}$.当t1, t2N3

$ \begin{array}{l} {\left\| {{D^{\alpha - 1}}Tu\left( {{t_2}} \right) - {D^{\alpha - 1}}Tu\left( {{t_1}} \right)} \right\|^{\rho 2}} \le {\left\| {\int_0^{{t_2}} {f\left( {s,u\left( s \right),\\ {D^{\alpha - 1}}u\left( s \right)} \right)} {\rm{d}}s - \int_0^{{t_1}} {f\left( {s,u\left( s \right),{D^{\alpha - 1}}u\left( s \right)} \right)} {\rm{d}}s} \right\|^{\rho 2}} \le \\ {\left( {\int_{{N_3}}^{{t_2}} {\left\| {f\left( {s,u\left( s \right),{D^{\alpha - 1}}u\left( s \right)} \right)} \right\|} \;{\rm{d}}s + \int_{{N_3}}^{{t_1}} {\left\| {f\left( {s,u\left( s \right),{D^{\alpha - 1}}u\left( s \right)} \right)} \right\|} \;{\rm{ds}}} \right)^{\rho 2}} \le \\ {\left( {2\int_{{N_3}}^\infty {\left\| {f\left( {t,u\left( t \right),{D^{\alpha - 1}}u\left( t \right)} \right)} \right\|} \;{\rm{dt}}} \right)^{\rho 2}} < \varepsilon . \end{array} $

故对∀ε>0,取N=max{N2, N3}时, (b)得证.

引理6  若条件H1成立,BY的有界子集,则αY(TB)=$\mathop {\sup }\limits_{t \in J} $α(‖TB(t)‖Y).

证明  对∀ε>0,存在划分TB=$\bigcup\limits_{i = 1}^n {} $TBi,使得diamY(TBi)<αY(TB)+ε,所以对∀tJu1, u2Bi${\left\| {\frac{{T{u_1}\left( t \right)}}{{1 + {t^{\alpha - 1}}}} - \frac{{T{u_2}\left( t \right)}}{{1 + {t^{\alpha - 1}}}}} \right\|^{{\rho _1}}}$≤‖Tu1-Tu2YαY(TB)+ε.

TB(t)=$\bigcup\limits_{i = 1}^n {} $TBi(t)及ε的任意性可得$\mathop {\sup }\limits_{t \in J} \alpha \left( {\frac{{{{\left\| {TB\left( t \right)} \right\|}^{{\rho _1}}}}}{{{{\left( {1 + t_1^{\alpha - 1}} \right)}^{{\rho _1}}}}}} \right)$αY(TB).

同理可证$\mathop {\sup }\limits_{t \in J} $ α(‖Dα-1TB(t)‖ρ2)≤αY(TB).故$\mathop {\sup }\limits_{t \in J} $α(‖TB(t)‖Y)≤αY(TB).

由引理5可知∀ε>0,∃N>0, 使得对t1, t2NuB${\left\| {\frac{{Tu\left( {{t_1}} \right)}}{{1 + t_1^{\alpha - 1}}} - \frac{{Tu\left( {{t_2}} \right)}}{{1 + t_2^{\alpha - 1}}}} \right\|^{{\rho _1}}}$ε1,则

$ \left\| {\frac{{Tu\left( {{t_1}} \right)}}{{1 + {t_1}^{\alpha - 1}}} - \frac{{Tu\left( {{t_2}} \right)}}{{1 + {t_2}^{\alpha - 1}}}} \right\| < \varepsilon . $ (4)

定义TB在[0,N]上的限制TB[0, N],由引理1得

$ \begin{array}{l} {\alpha _Y}\left( {TB|{\;_{\left[ {0,N} \right]}}} \right) \le \max \left\{ {{\alpha _X}\left( {TB|{\;_{\left[ {0,N} \right]}}} \right),{\alpha _C}\left( {{D^{\alpha - 1}}TB|{\;_{\left[ {0,N} \right]}}} \right)} \right\} \le \\ \mathop {\sup }\limits_{t \in J} \left\{ {\alpha \left( {\frac{{{{\left\| {TB\left( t \right)} \right\|}^{\rho 1}}}}{{{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}}}} \right),\alpha {{\left\| {{D^{\alpha - 1}}TB\left( t \right)} \right\|}^{\rho 2}}} \right\}. \end{array} $

又注意到存在B的划分,使得B=$\bigcup\limits_{i = 1}^n {} $BiTB[0, N]=$\bigcup\limits_{i = 1}^n {} $TBi[0, N]

$ dia{m_X}\left( {T{B_i}|{\;_{\left[ {0,N} \right]}}} \right) < \mathop {\sup }\limits_{t \in J} \alpha \left( {\frac{{{{\left\| {TB\left( t \right)} \right\|}^{\rho 1}}}}{{{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}}}} \right) + \varepsilon ,i = 1,2, \cdots ,n, $ (5)
$ diam\left( {\left( {{D^{\alpha - 1}}T{B_i}} \right)|{\;_{\left[ {0,N} \right]}}} \right) < \mathop {\sup }\limits_{t \in J} \alpha \left( {{{\left\| {{D^{\alpha - 1}}TB\left( t \right)} \right\|}^{\rho 2}}} \right) + \varepsilon ,i = 1,2, \cdots ,n. $ (6)

则对∀Tu1, Tu2TBi, tN,应用(4) 和(5) 式有

$ \begin{array}{l} {\left\| {\frac{{T{u_1}\left( t \right)}}{{1 + {t^{\alpha - 1}}}} - \frac{{T{u_2}\left( t \right)}}{{1 + {t^{\alpha - 1}}}}} \right\|^{\rho 1}} \le \left( {\left\| {\frac{{T{u_1}\left( t \right)}}{{1 + {t^{\alpha - 1}}}} - \frac{{T{u_1}\left( N \right)}}{{1 + {N^{\alpha - 1}}}}} \right\| + \left\| {\frac{{T{u_2}\left( N \right)}}{{1 + {N^{\alpha - 1}}}} - \frac{{T{u_2}\left( N \right)}}{{1 + {N^{\alpha - 1}}}}} \right\| + } \right.\\ {\left. {\left\| {\frac{{T{u_2}\left( N \right)}}{{1 + {N^{\alpha - 1}}}} - \frac{{T{u_2}\left( t \right)}}{{1 + {t^{\alpha - 1}}}}} \right\|} \right)^{\rho 1}} \le {\left( {\left\| {\frac{{T{u_1}\left( N \right)}}{{1 + {N^{\alpha - 1}}}} - \frac{{T{u_2}\left( N \right)}}{{1 + {N^{\alpha - 1}}}}} \right\| + 2\varepsilon } \right)^{\rho 1}}. \end{array} $

同理可得‖Dα-1Tu1(t)-Dα-1Tu2(t)‖ρ2≤(‖Dα-1Tu1(N)-Dα-1Tu2(N)‖+2ε)ρ2.

又因TB=$\bigcup\limits_{i = 1}^n {} $TBi,由(5) 和(6) 式及ε的任意性可知

$ {\alpha _Y}\left( {TB} \right) \le \mathop {\sup }\limits_{t \in J} \left\{ \alpha {\left( {\frac{{{{\left\| {TB\left( t \right)} \right\|}^{\rho 1}}}}{{{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}}}} \right),\alpha \left( {{{\left\| {{D^{\alpha - 1}}TB\left( t \right)} \right\|}^{\rho 2}}} \right)} \right\}. $

$\mathop {\sup }\limits_{t \in J} $α(‖TB(t)‖Y)≥αY(TB).

定理1  若条件H1~H3成立,则问题(2) 至少存在一个解.

证明   ① 取R≥max{$\frac{{\left\| {{u_\infty }} \right\| + 2\int_0^\infty {c\left( t \right){\rm{d}}t} }}{{\Gamma \left( \alpha \right) - 2\int_0^\infty {\left[ {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{{\rho _1}}}\alpha \left( t \right) + b\left( t \right)} \right]{\rm{d}}t} }}$, $\frac{1}{{2\int_0^\infty {\left[ {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{{\rho _1}}}\alpha \left( t \right) + b\left( t \right)} \right]{\rm{d}}t} }}$}.令B={uY:‖uYR},下证T:BB.对∀u(t)∈B,有

$ \begin{array}{l} \frac{{{{\left\| {Tu\left( t \right)} \right\|}^{\rho 1}}}}{{{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}}} \le {\left( {\frac{1}{{\Gamma \left( \alpha \right)}}\left[ {\left\| {{u_\infty }} \right\| + \int_0^\infty {\left\| {f\left( {t,u\left( t \right),{D^{\alpha - 1}}u\left( t \right)} \right)} \right\|{\rm{d}}t} } \right]} \right)^{\rho 1}} < \\ {\left( {\frac{{\left\| {{u_\infty }} \right\|}}{{\Gamma \left( \alpha \right)}} + \frac{2}{{\Gamma \left( \alpha \right)}}\left\{ {{{\left\| u \right\|}_Y}\int_0^\infty {\left[ {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}a\left( t \right) + b\left( t \right)} \right]} \;{\rm{d}}t + \int_0^\infty {c\left( t \right){\rm{d}}t} } \right\}} \right)^{^{\rho 1}}} \le \\ \frac{{\left\| {{u_\infty }} \right\|}}{{\Gamma \left( \alpha \right)}} + \frac{2}{{\Gamma \left( \alpha \right)}}\left\{ {{{\left\| u \right\|}_Y}\int_0^\infty {\left[ {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}a\left( t \right) + b\left( t \right)} \right]} \;{\rm{d}}t + \int_0^\infty {c\left( t \right){\rm{d}}t} } \right\} \le R. \end{array} $
$ {\left\| {{D^{\alpha - 1}}Tu\left( t \right)} \right\|^{\rho 2}} \le {\left( {\left\| {{u_\infty }} \right\| + 2\left\{ {{{\left\| u \right\|}_Y}\int_0^\infty {\left[ {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}a\left( t \right) + b\left( t \right)} \right]{\rm{d}}t + \int_0^\infty {} } } \right\}c\left( t \right){\rm{d}}t} \right)^{\rho 2}} \\ \le R. $

② 取D=$\overline {co} $(TB),则DB的有界闭凸子集,下证T:DD是严格集压缩.定义

$ \begin{array}{l} {T_n}u\left( t \right): = \frac{{{u_\infty }}}{{\Gamma \left( \alpha \right)}}{t^{\alpha - 1}} - \frac{1}{{\Gamma \left( \alpha \right)}}\int_0^t {\left[ {{t^{\alpha - 1}} - {{\left( {t - s} \right)}^{\alpha - 1}}} \right]} f\left( {s,u\left( s \right),{D^{\alpha - 1}}u\left( s \right)} \right){\rm{d}}s - \\ \frac{1}{{\Gamma \left( \alpha \right)}}\int_t^n {{t^{\alpha - 1}}} f\left( {s,u\left( s \right),{D^{\alpha - 1}}u\left( s \right)} \right){\rm{d}}s, \end{array} $
$ {\left\| {\frac{{{T_n}u\left( t \right)}}{{1 + {t^{\alpha - 1}}}} - \frac{{{T_n}u\left( t \right)}}{{1 + {t^{\alpha - 1}}}}} \right\|^{\rho 1}} \le {\left( {\frac{1}{{\Gamma \left( \alpha \right)}}\left[ {R\int_n^\infty {\left[ {{{\left( {1 + {t^{^{\alpha - 1}}}} \right)}^{\rho 1}}a\left( t \right) + b\left( t \right)} \right]{\rm{d}}t + \int_n^\infty {c\left( t \right){\rm{d}}t} } } \right]} \right)^{\rho 1}}, $
$ {\left\| {{D^{\alpha - 1}}T{u_m}\left( t \right) - {D^{\alpha - 1}}Tu\left( t \right)} \right\|^{\rho 2}} \le {\left( {R\int_n^\infty {\left[ {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}a\left( t \right) + b\left( t \right)} \right]} {\rm{d}}t + \int_n^\infty {c\left( t \right){\rm{d}}t} } \right)^{\rho 2}}. $

n→∞时,d(‖TnS(t)‖Y, ‖TS(t)‖Y)→0,由非紧性测度性质得:

$ \mathop {\lim }\limits_{n \to \infty } \alpha \left( {{{\left\| {{T_n}S\left( t \right)} \right\|}_{\;Y}}} \right) = \alpha \left( {\left\| {TS\left( t \right)} \right\|{\;_Y}} \right),t \in J. $

由引理5知$\left\{ {\frac{{S\left( t \right)}}{{1 + {t^{\alpha - 1}}}}} \right\}$,{Dα-1S(t)}在J的任意紧区间等度连续,由条件H1和H2f一致连续性得{f(t, u(t), Dα-1u(t)):u(t)∈S}在区间[0, n]上有界且等度连续,利用引理1、引理6和H3得:

$ \begin{array}{l} \alpha \left( {\frac{{{{\left\| {{T_n}S\left( t \right)} \right\|}^{\rho 1}}}}{{{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}}}} \right) \le \left\{ {\frac{1}{{\Gamma \left( \alpha \right)}}\int_0^t {\alpha \left( {\left\{ {f\left( {t,u\left( t \right),{D^{\alpha - 1}}u\left( t \right)} \right):u\left( t \right) \in S} \right\}} \right)} {\rm{d}}t + } \right.\\ \left. {\frac{1}{{\Gamma \left( \alpha \right)}}\int_t^n {\alpha \left( {\left\{ {f\left( {t,u\left( t \right),{D^{\alpha - 1}}u\left( t \right)} \right):u\left( t \right) \in S} \right\}} \right)} {\rm{d}}t} \right\} \le \\ \frac{1}{{\Gamma \left( \alpha \right)}}{\int_0^n {\left( {1 + {t^{\alpha - 1}}} \right)} ^{\rho 1}}h\left( t \right)\alpha \left( {\frac{{{{\left\| {S\left( t \right)} \right\|}^{\rho 1}}}}{{{{\left( {1 + {t^{\alpha - 1}}} \right)}^{^{\rho 1}}}}}} \right){\rm{d}}t \le \\ \frac{1}{{\Gamma \left( \alpha \right)}}{\int_0^n {\left( {1 + {t^{\alpha - 1}}} \right)} ^{\rho 1}}h\left( t \right){\rm{d}}t{\alpha _Y}\left( S \right) \le \frac{1}{{\Gamma \left( \alpha \right)}}{\int_0^\infty {\left( {1 + {t^{\alpha - 1}}} \right)} ^{\rho 1}}h\left( t \right){\rm{d}}t{\alpha _Y}\left( S \right), \end{array} $

注意到(1+tα-1)ρ1>1,1/Γ(α)>1,

$ \begin{array}{l} \alpha \left( {{{\left\| {{D^{\alpha - 1}}{T_n}S\left( t \right)} \right\|}^{\rho 2}}} \right) \le \int_t^n {\alpha \left( {\left\{ {f\left( {t,u\left( t \right),{D^{\alpha - 1}}u\left( t \right)} \right):u\left( t \right) \in S} \right\}} \right)} {\rm{d}}t \le \\ \int_t^n {h\left( t \right)\alpha } \left( {{{\left\| {{D^{\alpha - 1}}S\left( t \right)} \right\|}^{\rho 2}}} \right){\rm{d}}t \le \int_0^\infty {h\left( t \right){\rm{d}}t{\alpha _Y}} \left( S \right) \le \frac{1}{{\Gamma \left( \alpha \right)}}{\int_0^\infty {\left( {1 + {t^{\alpha - 1}}} \right)} ^{\rho 1}}h\left( t \right){\rm{d}}t{\alpha _Y}\left( S \right). \end{array} $

λ=$\frac{1}{{\Gamma \left( \alpha \right)}}\int_0^\infty {} $(1+tα-1)ρ1h(t)dt,由H3知0<λ<1,故$\mathop {\sup }\limits_{t \in J} $α(‖TS(t)‖Y)≤λαY(S),由引理6及Darbo不动点定理知问题(2) 在D中至少有一个解.

下面考虑问题(2) 中u=0,且定理1中f的次线性条件改为超线性条件时,则有定理2.

定理2  若f满足(H0), 存在非负函数a(t), b(t)∈C(J),ρi>1(i=1, 2), 使得

$ \left\| {f\left( {t,x,y} \right)} \right\| \le a\left( t \right)\;\;{\left\| x \right\|^{\rho 1}} + b\left( t \right)\;\left\| y \right\|{\;^{\rho 2}},t \in J,x \in E, $
$ \int_0^\infty {\left[ {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{\rho 1}}a\left( t \right) + b\left( t \right)} \right]{\rm{d}}t < \Gamma \left( \alpha \right)} , $

且同时满足H2和H3,则问题(2) 至少存在一个解.

证明过程类似前定理,只需取ρ=max{ρ1, ρ2},0<R${(\frac{{\Gamma \left( \alpha \right)}}{{2\int_0^\infty {\left[ {{{\left( {1 + {t^{\alpha - 1}}} \right)}^{{\rho _1}}}\alpha \left( t \right) + b\left( t \right)} \right]{\rm{d}}t} }})^{\frac{\rho }{{{\rho ^{ - 1}}}}}}$.

3 例子

定义空间E=l={u=(u1, u2, …, un, …):$\mathop {\sup }\limits_n $|un|<∞},空间E上的范数为‖u‖=$\mathop {\sup }\limits_n $|un|,则E是Banach空间.考虑边值问题:

$ \left\{ \begin{array}{l} {D^{3/2}}{u_n}\left( t \right) = \frac{{t{{\left| {{u_n}\left( t \right)} \right|}^{1/2}}}}{{8{{\rm{e}}^{{t^2}}}{{\left( {1 + \sqrt t } \right)}^{1/2}}}} + \frac{{\sqrt {\left| {\sin {{\left( {{D^{1/2}}{u_{n + 1}}\left( t \right)} \right)}^{2/3}}} \right|} }}{{16{n^2}\left( {9 + {t^2}} \right)}},\\ {u_n}\left( 0 \right) = 0,{D^{1/2}}{u_n}\left( \infty \right) = {u_{n\infty }}, \end{array} \right. $ (7)

其中:t∈[0, ∞); α=$\frac{3}{2}$; ρ1=$\frac{1}{2}$; ρ2=$\frac{1}{3}$; f(t, x, y)=(f1(t, x, y), f2(t, x, y), …, fn(t, x, y), …);

$ {f_n}\left( {t,x,y} \right) = \frac{{t{{\left| {{x_n}} \right|}^{1/2}}}}{{8{{\rm{e}}^{{t^2}}}{{\left( {1 + \sqrt t } \right)}^{1/2}}}} + \frac{{\sqrt {\left| {\sin y_{n + 1}^{2/3}} \right|} }}{{16{n^2}\left( {9 + {t^2}} \right)}}. $

显然f(t, x, y)∈C(J×E×E, E).注意到

$ \left\| {\;{{\left| x \right|}^{1/2}}\;} \right\| = \mathop {\sup }\limits_n \left| {\;\left| {{x_n}} \right|{\;^{1/2}}} \right| = \mathop {\sup }\limits_n \left| {{x_n}} \right|{\;^{1/2}} = {\left( {\mathop {\sup }\limits_n \left| {{x_n}} \right|\;} \right)^{^{1/2}}} = {\left\| x \right\|^{^{1/2}}}, $
$ \left\| {f\left( {t,x,y} \right)} \right\| \le \frac{t}{{8{{\rm{e}}^{{t^2}}}{{\left( {1 + \sqrt t } \right)}^{1/2}}}}{\left\| x \right\|^{^{1/2}}} + \frac{1}{{16\left( {9 + {t^2}} \right)}}{\left\| y \right\|^{1/3}}, $

$\frac{1}{2}$Γ(2/3)≈0.443 1,$\int_0^\infty {\left[ {{{\left( {1 + \sqrt t } \right)}^{1/2}}\frac{t}{{8{{\rm{e}}^{{t^2}}}{{\left( {1 + \sqrt t } \right)}^{1/2}}}} + \frac{1}{{16\left( {9 + {t^2}} \right)}}} \right]} {\rm{d}}t = \frac{1}{{16}} + \frac{{\rm{ \mathsf{ π} }}}{{96}}$≈0.095 2.

故取a(t)=$\frac{t}{{8{{\rm{e}}^{{t^2}}}{{\left( {1 + \sqrt t } \right)}^{1/2}}}}$b(t)=${\frac{1}{{16\left( {9 + {t^2}} \right)}}}$时条件H1满足, 条件H2显然满足.

对于H3,记f=f(1)+f(2),其中fn(1)=$\frac{{t{{\left| {{x_n}} \right|}^{1/2}}}}{{8{{\rm{e}}^{{t^2}}}{{\left( {1 + \sqrt t } \right)}^{1/2}}}}$fn(2)=$\frac{{\sqrt {\left| {\sin y_{n + 1}^{2/3}} \right|} }}{{16{n^2}\left( {9 + {t^2}} \right)}}$.

下证对任一有界集DEα(f(2)(t, x, D))=0.取有界集{y(m)} E,即‖y(m)‖≤Mm=1, 2, ….其中, y(m)=(y1(m), y2(m), …yn(m), …).固定某一tJ, xE

$ \left| {f_n^{\left( 2 \right)}\left( {t,x,{y^{\left( m \right)}}} \right)} \right| \le \frac{{{M^{1/3}}}}{{144{n^2}}}, $ (8)

所以{fn(2)(t, x, y(m))}有界.利用对角线方法,选取{y(mi)} {y(m)},使得当i→∞时,

$ f_n^{\left( 2 \right)}\left( {t,x,{y^{\left( {{m_i}} \right)}}} \right) \to {w_n}. $ (9)

由(8) 式可知

$ \left| {{w_n}} \right| \le \frac{{{M^{1/3}}}}{{144{n^2}}},n = 1,2, \cdots , $ (10)

所以w={w1, w2, …, wn, …}∈E.由(8) 和(10) 式知,对∀ε1>0,∃n>N时, 有

$ \left| {f_n^{\left( 2 \right)}\left( {t,x,{y^{\left( {{m_i}} \right)}}} \right)} \right| < {\varepsilon _1},\left| {{w_n}} \right| \le {\varepsilon _1},i = 1,2, \cdots . $ (11)

由(9) 式知, 对∀ε>0,∃K>0,使得当i>K时,

$ \left| {f_n^{\left( 2 \right)}\left( {t,x,{y^{\left( {{m_i}} \right)}}} \right) - {w_n}} \right| < \varepsilon ,n = 1,2, \cdots ,N. $ (12)

由(11) 和(12) 式易得‖f(2)(t, x, y(m))-w‖≤ε,即当i→∞时,‖f(2)(t, x, y(m))-w‖→0.所以对DEf(2)(t, x, D)是相对紧集.故α(f(2)(t, x, D))=0.因此对任一有界集SE,有

$ \alpha \left( {f\left( {t,S,{D^{\alpha - 1}}S} \right)} \right) \le \alpha \left( {{f^{\left( 1 \right)}}\left( {t,S,{D^{\alpha - 1}}S} \right)} \right) = \frac{{\alpha \left( S \right)}}{{8{t^{ - 1}}{{\rm{e}}^{{t^2}}}{{\left( {1 + \sqrt t } \right)}^{1/2}}}}. $

又因为$\int_0^\infty {{{\left( {1 + \sqrt t } \right)}^{1/2}}} $$\frac{1}{{8{t^{ - 1}}{{\rm{e}}^{{t^2}}}{{\left( {1 + \sqrt t } \right)}^{1/2}}}}{\rm{d}}t$<Γ(3/2),故取h(t)=$\frac{1}{{8{t^{ - 1}}{{\rm{e}}^{{t^2}}}{{\left( {1 + \sqrt t } \right)}^{1/2}}}}$,条件H3满足.

由定理1可知问题(7) 至少存在一个解.

参考文献
[1]
SABATIER J, AGRAWAL O P, TENREIRO M J A. Advances in fractional calculus[M]. Nether-Lands: Springer, 2007. (0)
[2]
MA D X. Positive solutions of multi-point boundary value problem of fractional differential equation[J]. Arab journal of mathematical sciences, 2015, 21(2): 225-236. DOI:10.1016/j.ajmsc.2014.11.001 (0)
[3]
GUO D, LAKSHMIKANTHAM V, LIU X. Nonlinear integral equations in abstract space[M]. Dordr-echt: Kluwer Academic Publishers, 2013. (0)
[4]
WANG J R, ZHANG Y. A class of nonlinear differential equations with fractional integrable impulses[J]. Commun Nonlinear Sci Numer Simul, 2014, 19(9): 3001-3010. DOI:10.1016/j.cnsns.2014.01.016 (0)
[5]
LIU Z H, LI X W. Existence and uniqueness of solutions for the nonlinear impulsive fractional differen-tial equation[J]. Communications in nonlinear science and numerical simulation, 2013, 18(6): 1362-1373. DOI:10.1016/j.cnsns.2012.10.010 (0)
[6]
王勇. 非线性分数阶微分方程积分边值问题的正解[J]. 应用数学, 2016, 29(1): 1-6. DOI:10.3879/j.issn.1000-0887.2016.01.001 (0)
[7]
刘东利, 杨军, 崔更新. 高阶分数阶微分方程边值问题正解的存在性[J]. 郑州大学学报(理学版), 2014, 46(1): 16-20. (0)
[8]
SU X. Solutions to boundary value problem of fractional order on unbounded domains in a Banach space[J]. Nonlinear analysis, 2011, 74(8): 2844-2852. DOI:10.1016/j.na.2011.01.006 (0)
[9]
SU X, ZHANG S. Unbounded solutions to a boundary value problem of fractional order on the half-line[J]. Computers and mathematics with applications, 2011, 61(4): 1079-1087. DOI:10.1016/j.camwa.2010.12.058 (0)