分数阶微分系统的初边值问题具有深刻的科学背景。与整数阶微分系统相比,分数阶微分系统能够更加精确地描述动态的变化过程[1-3],主要体现在对生物、物理、化学反应等方面。近几十年,分数阶微分系统作为非线性分析的一个重要分支开始广泛应用于水动力学、生物力学、量子力学、控制论等领域,并取得了许多重要成果[4-11]。与单个分数阶微分系统相比,耦合系统的研究条件更加复杂,因此关于分数阶微分耦合系统初边值问题的研究结果相对较少。
据我们所知,文献[12]利用格林函数和不动点定理在实空间中研究了非线性Riemann-Liouville型分数阶微分方程耦合系统边值问题解的存在性,之后又继续在实空间中研究下面非线性分数阶微分方程耦合系统边值问题解的存在性[13],
$\left\{\begin{array}{ll}D_{0^{+}}^{\alpha} u(t)=f(t, v(t)), & 0<t<1, \\ D_{0^{+}}^{\beta} v(t)=g(t, u(t)), & 0<t<1, \\ u(0)=u(1)=v(0)=v(1)=0, \end{array}\right. $ | (1) |
其中:1 < α,β≤2;D0+α、D0+β是Caputo型分数阶导数;f, g:[0, 1]×R→R连续,并且假设f, g满足增长性条件。2010年,Wang等利用Banach不动点定理在实空间中讨论了一类分数阶微分方程耦合系统边值问题正解的存在唯一性[14],
$\left\{\begin{array}{ll}D^{\alpha} u(t)+f(t, v(t))=0, & 0<t<1, \\ D^{\beta} v(t)+g(t, u(t))=0, & 0<t<1, \\ u(0)=v(0)=0, \\ u(1)=a u(\xi), v(1)=b v(\xi), \end{array}\right. $ | (2) |
其中:1 < α, β < 2;0≤a, b≤1;0 < ξ < 1;Dα、Dβ是Riemann-Liouville型分数阶导数;f, g:[0, 1]×[0, +∞)→[0, +∞)连续。关于非线性分数阶微分方程耦合系统初边值问题的其他相关结论参阅文献[15-16]及其中的相关文献。最近关于耦合系统的成果有董佳华等利用不动点定理在实空间中研究了一类非线性隐式分数阶微分方程耦合系统初值问题解的存在性和唯一性[17]。
受以上研究成果的启发,本文主要研究如下无限区间[0, +∞)上非线性Caputo型分数阶微分方程耦合系统在Banach空间中解的存在性和唯一性,
$\left\{ \begin{array}{l} ^CD_{{0^ + }}^\alpha u\left( t \right) = f\left( {t, v\left( t \right){, ^C}D_{{0^ + }}^\beta v\left( t \right)} \right), t \in J = [0, + \infty ), \\ ^cD_{{0^ + }}^{{\alpha ^\prime }}v(t) = g\left( {t, u(t){, ^C}D_{{0^ + }}^\beta u(t)} \right), t \in J = [0, + \infty ), \\ u\left( 0 \right) = {u_0}, v\left( 0 \right) = {v_0}, \end{array} \right. $ | (3) |
其中:0 < α, α′ < 1,0≤β < 1,并且0≤β < α, α′ < 1;CD0+α、CD0+β、CD0+α′是Caputo型分数阶导数;u0, v0∈Y,Y是Banach空间;trf(t, x, y), trg(t, x, y)∈C(J×Y×Y, Y), r∈[0, 1)。
1 基本假设给定本文所用到的空间
$X=\left\{x \mid x(t) \in C(J, Y), ^{C} D_{0^{+}}^{\beta} x(t) \in C(J, Y), \sup\limits_{t \in J} \frac{\|x(t)\|}{1+t^{\lambda}}<\infty, \sup\limits_{t \in J} \frac{\left\|^{C} D_{0^{+}}^{\beta} x(t)\right\|}{1+t^{\lambda}}<\infty\right\}, $ |
其中:λ>1,定义其范数
$\|x\|_{X}=\max \left\{\sup\limits_{t \in J} \frac{\|x(t)\|}{1+t^{\lambda}}, \sup\limits_{t \in J} \frac{\left\|^{C} D_{0^{+}}^{\beta} x(t)\right\|}{1+t^{\lambda}}\right\}。$ |
为了证明本文的结果,还需给定空间X×X={(x, y)x∈X, y∈X},定义其范数为
$\|(x, y)\|_{X \times X}=\max \left\{\|x\|_{X}, \|y\|_{X}\right\}。$ |
易证(X, ‖·‖X)和(X×X, ‖·‖X×X)都是Banach空间[18-20]。
下面将给出本文所用到的假设条件。
H1) 连续函数x, y, trf(t, x, y):J×X×X→X, trg(t, x, y):J×X×X→X满足
$\left\|t^{r}\left[f\left(t, \left(1+t^{\lambda}\right) x, \left(1+t^{\lambda}\right) y\right)-f\left(t, \left(1+t^{\lambda}\right) x^{\prime}, \left(1+t^{\lambda}\right) y^{\prime}\right)\right]\right\| \leqslant L_{1}(t)\left\|x(t)-x^{\prime}(t)\right\|+L_{2}(t)\left\|y(t)-y^{\prime}(t)\right\|, $ |
$\left\|t^{r}\left[g\left(t, \left(1+t^{\lambda}\right) x, \left(1+t^{\lambda}\right) y\right)-g\left(t, \left(1+t^{\lambda}\right) x^{\prime}, \left(1+t^{\lambda}\right) y^{\prime}\right)\right]\right\| \leqslant L_{3}(t)\left\|x(t)-x^{\prime}(t)\right\|+L_{4}(t)\left\|y(t)-y^{\prime}(t)\right\|, $ |
其中:非负连续函数L1(t)、L2(t)、L3(t)、L4(t)满足
$\frac{1}{{\mathit{\Gamma }\left( {{\eta _1}} \right)\left( {1 + {t^\lambda }} \right)}}\int_0^t {\frac{{{{(t - s)}^{{\eta _1} - 1}}}}{{{s^r}}}} \left( {{L_1} + {L_2}} \right)(s){\rm{d}}s \le {\rho _1}, t \in [0, + \infty ), {\rho _1} \in (0, 1), {\eta _1} = \alpha {\rm{或}}\alpha - \beta, $ |
$\frac{1}{\mathit{\Gamma }\left(\eta_{2}\right)\left(1+t^{\lambda}\right)} \int_{0}^{t} \frac{(t-s)^{\eta_{2}-1}}{s^{r}}\left(L_{3}+L_{4}\right)(s) \mathrm{d} s \leqslant \rho_{2}, t \in[0, +\infty), \rho_{2} \in(0, 1), \eta_{2}=\alpha^{\prime} 或 \alpha^{\prime}-\beta 。$ |
H2) 存在常数M, N>0,使得f(t, 0, 0),g(t, 0, 0)满足
$\frac{(t+1)^{\beta}}{\mathit{\Gamma }(\alpha-\beta)\left(1+t^{\lambda}\right)} \int_{0}^{t}(t-s)^{\alpha-\beta-1} s^{-r}\left\|s^{r} f(s, 0, 0)\right\| \mathrm{d} s \leqslant M<\infty, t \in[0, +\infty), $ |
$\frac{(t+1)^{\beta}}{\mathit{\Gamma }\left(\alpha^{\prime}-\beta\right)\left(1+t^{\lambda}\right)} \int_{0}^{t}(t-s)^{\alpha^{\prime}-\beta-1} s^{-r}\left\|s^{r} g(s, 0, 0)\right\| \mathrm{d} s \leqslant N<\infty, t \in[0, +\infty)。$ |
下面运用Banach压缩映射原理,证明初值问题(3)解的存在性和唯一性。
定理1 假设条件H1)和H2)成立,则初值问题(3)的解存在且唯一。
证明 定义算子T:X×X→X×X,
$T\left( {u, v} \right)\left( t \right) = \left( {{u_0} + I_{{0^ + }}^\alpha f\left( {t, v\left( t \right){, ^C}D_0^\beta + v\left( t \right)} \right), {v_0} + I_0^\alpha + g\left( {t, u\left( t \right){, ^C}D_{{0^ + }}^\beta u\left( t \right)} \right)} \right) \buildrel \wedge \over = \left( {{T_1}v\left( t \right), {T_2}u\left( t \right)} \right)。$ |
显然算子T:X×X→X×X。事实上,对任意的(u, v)∈X×X,即u∈X, v∈X,有
$\frac{\left\|T_{1} v(t)\right\|}{1+t^{\lambda}} \leqslant \frac{\left\|u_{0}\right\|}{1+t^{\lambda}}+\frac{1}{\Gamma(\alpha)} \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{1+t^{\lambda}} s^{-r}\left\|s^{r} f\left(s, v(s), ^{c} D_{0^{+}}^{\beta} v(s)\right)\right\| \mathrm{d} s \leqslant\\ \left\|u_{0}\right\|+\frac{1}{\Gamma(\alpha)\left(1+t^{\lambda}\right)} \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{s^{r}}\left(L_{1}(s) \frac{\|v(s)\|}{1+s^{\lambda}}+L_{2}(s) \frac{\left\|^{C} D_{0^{+}}^{\beta} v(s)\right\|}{1+s^{\lambda}}\right) \mathrm{d} s+\\ \frac{{\mathit{\Gamma }(\alpha - \beta )}}{{\mathit{\Gamma }(\alpha )\mathit{\Gamma }(\alpha - \beta )\left( {1 + {t^\lambda }} \right)}}\int_0^t {\frac{{{{(t - s)}^{\alpha - \beta - 1}}{{(t - s)}^\beta }}}{{{s^r}}}} \left\| {{s^r}f(s, 0, 0)} \right\|{\rm{d}}s \leqslant\\ \left\|u_{0}\right\|+\rho_{1}\|v\|_{x}+\frac{\mathit{\Gamma }(\alpha-\beta)}{\mathit{\Gamma }(\alpha)} M<\infty, t \in[0, +\infty) $ |
$\frac{\left\|T_{2} u(t)\right\|}{1+t^{\lambda}} \leqslant\left\|v_{0}\right\|+\frac{1}{\Gamma\left(\alpha^{\prime}\right)\left(1+t^{\lambda}\right)} \int_{0}^{t} \frac{(t-s)^{\alpha^{\prime}-1}}{s^{r}}\left(L_{3}(s) \frac{\|u(s)\|}{1+s^{\lambda}}+L_{4}(s) \frac{\left\|^{C} D_{0^{+}}^{\beta} u(s)\right\|}{1+s^{\lambda}}\right) \mathrm{d} s+\\ \frac{\mathit{\Gamma }\left(\alpha^{\prime}-\beta\right)}{\mathit{\Gamma }\left(\alpha^{\prime}\right)} N \leqslant\left\|v_{0}\right\|+\rho_{2}\|u\|_{X}+\frac{\mathit{\Gamma }\left(\alpha^{\prime}-\beta\right)}{\mathit{\Gamma }\left(\alpha^{\prime}\right)} N<\infty, t \in[0, +\infty)。$ |
另一方面,
$\frac{\left\|^{C} D_{0^{+}}^{\beta} T_{1} v(t)\right\|}{1+t^{\lambda}} \leqslant\left\|u_{0}\right\|+\frac{\|v\|_{X}}{\Gamma(\alpha-\beta)\left(1+t^{\lambda}\right)} \int_{0}^{t} \frac{(t-s)^{\alpha-\beta-1}}{s^{r}}\left(L_{1}+L_{2}\right)(s) \mathrm{d} s+\frac{M}{(t+1)^{\beta}} \leqslant\\ \left\|u_{0}\right\|+\rho_{1}\|v\|_{X}+M<\infty, t \in[0, +\infty)。$ |
$\frac{{\left\| {^CD_{{0^ + }}^\beta {T_2}u\left( t \right)} \right\|}}{{1 + {t^\lambda }}} \le \left\| {{v_0}} \right\| + \frac{{{{\left\| u \right\|}_X}}}{{\mathit{\Gamma }\left( {{\alpha ^\prime } - \beta } \right)\left( {1 + {t^\lambda }} \right)}}\int_0^t {\frac{{{{(t - s)}^{{\alpha ^\prime } - \beta - 1}}}}{{{s^r}}}} \left( {{L_3} + {L_4}} \right)(s){\rm{d}}s + \frac{N}{{{{(t + 1)}^\beta }}} \le \\ \left\|v_{0}\right\|+\rho_{2}\|u\|_{X}+N<\infty, t \in[0, +\infty)。$ |
因此可知T(u, v)∈X×X,故算子T:X×X→X×X。
下面证明算子T:X×X→X×X是严格压缩的。事实上,对任意的u1, u2, v1, v2∈X,有
$\frac{\left\|T_{1} v_{1}(t)-T_{1} v_{2}(t)\right\|}{1+t^{\lambda}} \leqslant \frac{1}{\mathit{\Gamma }(\alpha)} \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{1+t^{\lambda}}\left\|f\left(s, v_{1}(s), { }^{C} D_{0^{+}}^{\beta}{ }_{1}(s)\right)-f\left(s, v_{2}(s), { }^{C} D_{0^{+}}^{\beta}{ }_{2}(s)\right)\right\| \mathrm{d} s \leqslant\\ \frac{1}{\mathit{\Gamma }(\alpha)\left(1+t^{\lambda}\right)} \int_{0}^{t}\left[\frac{(t-s)^{\alpha-1}}{s^{r}}\left(L_{1}(s) \frac{\| v_{1}(s)-v_{2}(s)}{1+s^{\lambda}}+L_{2}(s) \frac{\|^{C} D_{0^{+}}^{\beta} v_{1}(s)-{ }^{C} D_{0}^{\beta}+v_{2}(s)}{1+s^{\lambda}}\right)\right] \mathrm{d} s \leqslant\\ \frac{\left\|v_{1}-v_{2}\right\|_{X}}{\mathit{\Gamma }(\alpha)\left(1+t^{\lambda}\right)} \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{s^{r}}\left(L_{1}+L_{2}\right)(s) \mathrm{d} s \leqslant \rho_{1}\left\|v_{1}-v_{2}\right\|_{X}, $ |
$\frac{\left\|T_{2} u_{1}(t)-T_{2} u_{2}(t)\right\|}{1+t^{\lambda}} \leqslant \frac{\left\|u_{1}-u_{2}\right\|_{X}}{\mathit{\Gamma }\left(\alpha^{\prime}\right)\left(1+t^{\lambda}\right)} \int_{0}^{t} \frac{(t-s)^{\alpha^{\prime}-1}}{s^{r}}\left(L_{3}+L_{4}\right)(s) \mathrm{d} s \leqslant \rho_{2}\left\|u_{1}-u_{2}\right\|_{X^{\circ}}。$ |
另一方面,我们有
$\frac{\left\|{ }^{C} D_{0^{+}}^{\beta} T_{1} v_{1}(t)-{ }^{C} D_{0^{+}}^{\beta} T_{1} v_{2}(t)\right\|}{1+t^{\lambda}}\leqslant \frac{\left\|v_{1}-v_{2}\right\|_{X}}{\mathit{\Gamma }(\alpha-\beta)\left(1+t^{\lambda}\right)} \int_{0}^{t} \frac{(t-s)^{\alpha-\beta-1}}{s^{r}}\left(L_{1}+L_{2}\right)(s) \mathrm{d} s \leqslant \rho_{1}\left\|v_{1}-v_{2}\right\|_{X}, $ |
$\frac{\left\|^{C} D_{0^{+}}^{\beta} T_{2} u_{1}(t)-{ }^{C} D_{0^{+}}^{\beta} T_{2} u_{2}(t)\right\|}{1+t^{\lambda}}\leqslant \frac{\left\|u_{1}-u_{2}\right\|_{X}}{\mathit{\Gamma }\left(\alpha^{\prime}-\beta\right)\left(1+t^{\lambda}\right)} \int_{0}^{t} \frac{(t-s)^{\alpha^{\prime}-\beta-1}}{s^{r}}\left(L_{3}+L_{4}\right)(s) \mathrm{d} s \leqslant \rho_{2}\left\|u_{1}-u_{2}\right\|_{X}。$ |
由此可知,对任意的(u1, v1), (u2, v2)∈X,有
$\left\|T\left(u_{1}, v_{1}\right)-T\left(u_{2}, v_{2}\right)\right\|_{X \times X} \leqslant \rho\left\|\left(u_{1}, v_{1}\right)-\left(u_{2}, v_{2}\right)\right\|_{X \times X}, \rho=\max \left\{\rho_{1}, \rho_{2}\right\} \in(0, 1), $ |
即算子T:X×X→X×X是严格压缩的。
综上,根据Banach压缩映射原理得到算子T:X×X→X×X在Banach空间X×X中存在唯一的(u, v),使得T(u, v)=(u, v),即问题(3)在Banach空间X×X中存在唯一解。
3 结论本文通过构造特殊的Banach空间,运用Banach压缩映射原理得到了保证一类非线性分数阶微分方程耦合系统(3)在无限区间[0, +∞)上解的存在唯一性的充分条件。
[1] |
郭大钧. 非线性泛函分析[M]. 济南: 山东科学技术出版社, 2001. GUO D J. Nonlinear functional analysis[M]. Jinan: Shandong Science & Technology Press, 2001. ( ![]() |
[2] |
KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. Besloten Vennootschap: Elsevier Press, 2006.
( ![]() |
[3] |
RAY S S. Fractional calculus with applications for nuclear reactor dynamics[M]. Boca Raton: CRC Press, 2017.
( ![]() |
[4] |
续焕英.分数阶微积分在反常输运过程中的应用研究[D].济南: 山东大学, 2017. XU H Y. Research on the applications of fractional calculus in anomalous transport[D]. Jinan: Shandong University, 2017. ( ![]() |
[5] |
陈玉霞, 高金峰. 一个新的分数阶混沌系统[J]. 郑州大学学报(理学版), 2009, 41(4): 45-48. CHEN Y X, GAO J F. A new fractional-order chaotic system[J]. Journal of Zhengzhou university(natural science edition), 2009, 41(4): 45-48. ( ![]() |
[6] |
聂玉峰, 胡嘉卉, 王俊刚. 求解三维空间分数阶对流扩散方程的Douglas-Gunn格式[J]. 郑州大学学报(理学版), 2019, 51(1): 44-50. NIE Y F, HU J H, WANG J G. Douglas-Gunn finite difference scheme for three-dimensional space fractional advection diffusion equation[J]. Journal of Zhengzhou university(natural science edition), 2019, 51(1): 44-50. ( ![]() |
[7] |
虎晓燕, 韩惠丽. 重心插值配点法求解分数阶Fredholm积分方程[J]. 郑州大学学报(理学版), 2017, 49(1): 17-23. HU X Y, HAN H L. Barycentric interpolation collocation method for solving Fredholm integral equation of fractional order[J]. Journal of Zhengzhou university(natural science edition), 2017, 49(1): 17-23. ( ![]() |
[8] |
SUN H G, CHEN W, CHEN Y Q. Variable-order differential operator in anomalous diffusion modeling[J]. Physica A: statistical mechanics and its applications, 2009, 388(21): 4586-4592. ( ![]() |
[9] |
ZHANG L H, AHMAD B, WANG G T, et al. Nonlinear fractional integro-differential equations on unbounded domains in a Banach space[J]. Journal of computational and applied mathematics, 2013, 249(6): 51-56. ( ![]() |
[10] |
SINGH J, GUPTA P K, RAI K N. Solution of fractional bioheat equations by finite difference method and HPM[J]. Mathematical and computer modelling, 2011, 54(9/10): 2316-2325. ( ![]() |
[11] |
周学勇, 杨皦蓉, 齐龙兴. 一类分数阶SIQS传染病模型的稳定性分析[J]. 信阳师范学院学报(自然科学版), 2018, 31(1): 1-4. ZHOU X Y, YANG J R, QI L X. Analysis of stability for a fractional order SIQS mode[J]. Journal of Xinyang normal university (natural science edition), 2018, 31(1): 1-4. ( ![]() |
[12] |
SU X W. Boundary value problem for a coupled system of nonlinear fractional differential equations[J]. Applied mathematics letters, 2009, 22(1): 64-69. ( ![]() |
[13] |
苏新卫. 分数阶微分方程耦合系统边值问题解的存在性[J]. 工程数学学报, 2009, 26(1): 133-137. NSU X W. The existence of solution to boundary value problems for a coupled system of nonlinear fractional differential equations[J]. Chinese journal of engineering mathematics, 2009, 26(1): 133-137. ( ![]() |
[14] |
WANG J, XIANG H, LIU Z. Positive solution to nonzero boundary value problem for a coupled system of nonlinear fractional differential equations[J]. International journal of differential equations, 2010, 2010(1): 1-12. ( ![]() |
[15] |
薛益民, 刘洁, 戴振祥, 等. 一类非线性分数阶微分方程耦合系统边值问题解的存在性[J]. 四川师范大学学报(自然科学版), 2018, 41(5): 614-620. XUE Y M, LIU J, DAI Z X, et al. Existence of solutions of the boundary value problem for a coupled system of nonlinear fractional differential equations[J]. Journal of Sichuan normal university(natural science), 2018, 41(5): 614-620. DOI:10.3969/j.issn.1001-8395.2018.05.008 ( ![]() |
[16] |
刘梦婷, 杨军, 彭丹, 等. 一类无穷区间上分数阶耦合系统边值问题解的存在性[J]. 数学的实践与认识, 2017, 47(16): 171-180. LIU M T, YANG J, PENG D, et al. Existence solutions for a coupled system of fractional boundary value problems on unbounded domains[J]. Mathematics in practice and theory, 2017, 47(16): 171-180. ( ![]() |
[17] |
董佳华, 冯育强, 蒋君. 非线性隐式分数阶微分方程耦合系统初值问题[J]. 应用数学学报, 2019, 42(3): 356-370. DONG J H, FENG Y Q, JIANG J. Initial value problem for a coupled system of nonlinear implicit for fractional differential equations[J]. Acta mathematicae applicatae sinica, 2019, 42(3): 356-370. ( ![]() |
[18] |
SU X W, ZHANG S Q. Unbounded solutions to a boundary value problem of fractional order on the half-line[J]. Computers & mathematics with applications, 2011, 61(4): 1079-1087. ( ![]() |
[19] |
SU X W. Solutions to boundary value problem of fractional order on unbounded domains in a Banach space[J]. Nonlinear analysis, 2011, 74(8): 2844-2852. ( ![]() |
[20] |
KOU C H, ZHOU H C, YAN Y. Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis[J]. Nonlinear analysis, 2011, 74(17): 5975-5986. ( ![]() |