郑州大学学报(理学版)  2019, Vol. 51 Issue (4): 116-122  DOI: 10.13705/j.issn.1671-6841.2018316

引用本文  

何国亮, 郑真真. 一族新的微分方程的守恒律和Darboux变换[J]. 郑州大学学报(理学版), 2019, 51(4): 116-122.
HE Guoliang, ZHENG Zhenzhen. A Novel Hierarchy of Differential Equations, Conservation Laws and Darboux Transformation[J]. Journal of Zhengzhou University(Natural Science Edition), 2019, 51(4): 116-122.

基金项目

国家自然科学基金项目(11501526, 11871232);河南省高等学校青年骨干教师培养计划项目(2017GGJS097);河南省高等学校重点科研项目(17A110035)

通信作者

郑真真(1995—),河南开封人,硕士研究生,主要从事孤立子与可积系统研究,E-mail:zhengzhenzhen567@163.com

作者简介

何国亮(1983—),男,河南郑州人,副教授,主要从事孤立子与可积系统研究,E-mail:glhemath@163.com

文章历史

收稿日期:2018-11-29
一族新的微分方程的守恒律和Darboux变换
何国亮, 郑真真    
郑州轻工业大学 数学与信息科学学院 河南 郑州 450002
摘要:借助于零曲率方程给出一个与3×3矩阵谱问题相关的新的非线性演化方程族.基于谱问题及其辅谱问题,得到了这个方程族中前两个非线性演化方程的无穷多守恒律和第一个非线性演化方程由Darboux变换构造的一些显式解.
关键词3×3矩阵谱问题    非线性演化方程    守恒律    Darboux变换    
A Novel Hierarchy of Differential Equations, Conservation Laws and Darboux Transformation
HE Guoliang, ZHENG Zhenzhen    
School of Mathematics and Information Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
Abstract: With the aid of the zero-curvature equation, a novel integrable hierarchy of nonlinear evolution equations associated with a 3×3 matrix spectral problem was proposed. Based on two linear spectral problems, the infinite many conservation laws of the first two members and explicit solutions constructed from the Darboux transformation of the first member in the hierarchy were obtained.
Key words: 3×3 matrix spectral problem    nonlinear evolution equations    conservation laws    Darboux transformation    
0 引言

在理论物理和数学物理中,用带谱参数λ的Lax对去发现新的可积系统是一个有意义的研究领域.可积系统的另一个关键特征是它们具有无穷多守恒律[1-2].具有Lax表示的可积系统可以用反散射变换方法[3-4]、代数几何方法[5-7]、Darboux方法[8-9]及其他方法[10-13]求解,尤其是起源于1882年Darboux对Sturm-Liouville方程进行研究时所提出的Darboux变换方法,它是一种获得演化方程精确解[14-16]的非常有效的方法.

文中我们给出了一个与3×3矩阵谱问题相关的新的非线性演化方程族,并且通过考虑两个相关的线性谱问题,得到了这个方程族中前两个非线性演化方程的无穷多守恒律

$ \left\{ {\begin{array}{*{20}{l}} {{u_t} = 2{u_x} + 6{v_x},}\\ {{v_t} = - 2{u_{xxx}} + 16u{u_x} - 6{v_x}.} \end{array}} \right. $ (1)
$ \left\{ {\begin{array}{*{20}{l}} {{u_t} = {{\left( {6{u_{xx}} + 9{v_{xx}} - 24{u^2} - 36uv - 4u - 3v} \right)}_x},}\\ {{v_t} = {{\left( { - 3{u_{xxxx}} - 6{v_{xx}} + {u_{xx}} + 36u{u_{xx}} + 18u_x^2 - 32{u^3} - 4{u^2} - 18{v^2}} \right)}_x}.} \end{array}} \right. $ (2)

最后,通过引入3×3矩阵谱问题的规范变换,得到了方程(1)的Darboux变换,并由此给出一些精确解.

1 非线性演化方程族和无穷多守恒律

本节,我们首先引入一个以uv为位势, λ为常谱参数的3×3矩阵谱问题

$ {\mathit{\boldsymbol{\psi }}_x} = \mathit{\boldsymbol{U\psi }};\mathit{\boldsymbol{\psi }} = \left( {\begin{array}{*{20}{l}} {{\psi _1}}\\ {{\psi _2}}\\ {{\psi _3}} \end{array}} \right);\mathit{\boldsymbol{U}} = \left( {\begin{array}{*{20}{l}} 0&u&{\lambda + v}\\ 1&1&{\;\;u}\\ 0&1&{\;\;0} \end{array}} \right). $ (3)

然后借助于零曲率方程得到与之相联系的非线性演化方程族.为了推导相对应的非线性演化方程,我们定义两组Lenard递推方程

$ \left\{ {\begin{array}{*{20}{l}} {\mathit{\boldsymbol{K}}{\mathit{\boldsymbol{s}}_j} = \mathit{\boldsymbol{J}}{s_{j + 1}},j \ge 0,{{\left. {{{\boldsymbol{s}}_j}} \right|}_{(u,v) = 0}} = 0,j \ge 1,}\\ {\mathit{\boldsymbol{K}}{{\mathit{\boldsymbol{\hat s}}}_j} = \mathit{\boldsymbol{ J}}{{\hat s}_{j + 1}},j \ge 0,{{\left. {{{\mathit{\boldsymbol{\hat s}}}_j}} \right|}_{(u,v) = 0}} = 0,j \ge 1,} \end{array}} \right. $ (4)

其中:初值s0=(1, 0)T, $ {\mathit{\boldsymbol{\hat s}}_0} = {(0, 1)^{\rm{T}}} $; 两个反称算子分别为(∂∂-1=-1=1),

$ \mathit{\boldsymbol{K}} = \left( {\begin{array}{*{20}{c}} { - {\partial ^3} + \partial u + u\partial + \frac{1}{3}\partial }&{\frac{2}{3}{\partial ^3} + 2\partial v + v\partial + \frac{2}{3}\partial u}\\ {\frac{2}{3}{\partial ^3} + 2v\partial + \partial v + \frac{2}{3}u\partial }&{{K_{22}}} \end{array}} \right);\mathit{\boldsymbol{J}} = \left( {\begin{array}{*{20}{c}} 0&{ - 3\partial }\\ { - 3\partial }&{4\partial } \end{array}} \right), $ (5)

$K_{22}=\frac{1}{3} \partial^{5}-\frac{2}{3} \partial^{3} u-\frac{2}{3} u \partial^{3}-\partial^{3}-\partial u \partial^{2}-\partial^{2} u \partial+2 \partial u^{2}+2 u^{2} \partial+\frac{4}{3} u \partial u-2 \partial v-2 v \partial $.从而我们可以唯一确定sj$ \hat{\boldsymbol{s}}_{j} $, 例如

$ {\mathit{\boldsymbol{s}}_1} = \left( {\begin{array}{*{20}{c}} { - \frac{1}{9}(4u + 3v)}\\ { - \frac{1}{3}u} \end{array}} \right);{{\mathit{\boldsymbol{\hat s}}}_1} = \left( {\begin{array}{*{20}{c}} {\frac{1}{{27}}\left( {6{u_{xx}} - 24{u^2} - 8u - 6v} \right)}\\ { - \frac{2}{9}(u + 3v)} \end{array}} \right). $ (6)

接下来,我们考虑静态零曲率方程

$ {\mathit{\boldsymbol{V}}_x} - \left[ {\mathit{\boldsymbol{U}},\mathit{\boldsymbol{V}}} \right] = 0;\mathit{\boldsymbol{V}} = \left( {\begin{array}{*{20}{l}} {{V_{11}}}&{{V_{12}}}&{{V_{13}}}\\ {{V_{21}}}&{{V_{22}}}&{{V_{23}}}\\ {{V_{31}}}&{{V_{32}}}&{{V_{33}}} \end{array}} \right), $ (7)

它等价于

$ \left\{ \begin{array}{l} {V_{11,x}} + {V_{12}} - u{V_{21}} - (\lambda + v){V_{31}} = 0,\\ {V_{12,x}} + {V_{12}} + {V_{13}} + u\left( {{V_{11}} - {V_{22}}} \right) - (\lambda + v){V_{32}} = 0,\\ {V_{13,x}} - u{V_{23}} + u{V_{12}} + (\lambda + v)\left( {{V_{11}} - {V_{33}}} \right) = 0,\\ {V_{21,x}} - {V_{21}} + {V_{22}} - {V_{11}} - u{V_{31}} = 0,\\ {V_{22,x}} + {V_{23}} - {V_{12}} + u{V_{21}} - u{V_{32}} = 0,\\ {V_{23,x}} - {V_{13}} - {V_{23}} + u\left( {{V_{22}} - {V_{33}}} \right) + (\lambda + v){V_{21}} = 0,\\ {V_{31,x}} + {V_{32}} - {V_{21}} = 0,\\ {V_{32,x}} + {V_{33}} - {V_{22}} + u{V_{31}} + {V_{32}} = 0,\\ {V_{33,x}} - {V_{23}} + u{V_{32}} + (\lambda + v){V_{31}} = 0. \end{array} \right. $ (8)

如果我们定义$ (a, b) = \sum\limits_{j = 0}^\infty {\left( {{a_j}, {b_j}} \right)} {\lambda ^{ - j}} $

$ \begin{array}{l} {V_{11}} = \frac{1}{3}\left( {3\partial - 1} \right)a + \frac{1}{3}\left( {{\partial ^2} - 3\partial - 2u} \right)b;{V_{12}} = \frac{1}{3}\left( {\partial - 3{\partial ^2} + 3u} \right)a +\\ \frac{1}{3}\left( {3{\partial ^2} - {\partial ^3} + 2\partial u + 3u\partial + 6v} \right)b + 2\lambda b;\\ {V_{13}} = \frac{1}{3}\left( {2{\partial ^2} + 3v} \right)a + \frac{1}{3}\left( {{\partial ^4} - 2{\partial ^2}u - 3u{\partial ^2} - 3{\partial ^2} - 3{\partial u \partial} + 6{u^2} - 6v} \right)\\ b + \lambda (a - 2b);{V_{21}} = a + \partial b;\\ {V_{22}} = \frac{2}{3}a - \frac{2}{3}\left( {{\partial ^2} - 2u} \right)b;{V_{23}} = - \frac{1}{3}\left( {3{\partial ^2} + \partial - 3u} \right)a +\\ \frac{1}{3}\left( {{\partial ^3} + 3{\partial ^2} - 2\partial u - 3u\partial + 6v} \right)b + 2\lambda b;\\ {V_{31}} = 2b;{V_{32}} = a - \partial b;{V_{33}} = - \frac{1}{3}(3\partial + 1)a + \frac{1}{3}\left( {{\partial ^2} + 3\partial - 2u} \right)b. \end{array} $ (9)

把式(9)代入式(8),可以得到

$ \mathit{\boldsymbol{K}}{\mathit{\boldsymbol{S}}_j} = \mathit{\boldsymbol{J}}{\mathit{\boldsymbol{S}}_{j + 1}},j \ge 0;\mathit{\boldsymbol{J}}{\mathit{\boldsymbol{S}}_0} = 0. $ (10)

易见方程JS0=0有通解$ \boldsymbol{S}_{0}=\boldsymbol{\alpha}_{0} \boldsymbol{s}_{0}+\hat{\boldsymbol{\alpha}}_{0} \hat{\boldsymbol{s}}_{0} $,从而$\boldsymbol{S}_{j}=\left(a_{j}, b_{j}\right)^{\mathrm{T}}=\alpha_{0} \boldsymbol{s}_{j}+\hat{\boldsymbol{\alpha}}_{0} \hat{\boldsymbol{s}}_{j}$,满足递推方程(10), 这里的α0$ \hat{\alpha}_{0} $是任意常数.

ψ满足谱问题(3)和辅谱问题

$ {\mathit{\boldsymbol{\psi }}_{{t_n}}} = {\mathit{\boldsymbol{V}}^{(n)}}\mathit{\boldsymbol{\psi }};{\mathit{\boldsymbol{V}}^{(n)}} = \left( {\begin{array}{*{20}{l}} {V_{11}^{(n)}}&{V_{12}^{(n)}}&{V_{13}^{(n)}}\\ {V_{21}^{(n)}}&{V_{22}^{(n)}}&{V_{23}^{(n)}}\\ {V_{31}^{(n)}}&{V_{32}^{(n)}}&{V_{33}^{(n)}} \end{array}} \right), $ (11)

其中:Vij(n)=Vij(a(n)b(n)); $ \left( {{a^{(n)}}, {b^{(n)}}} \right) = \sum\limits_{l = 0}^n {\left( {{a_l}, {b_l}} \right)} {\lambda ^{n - l}} $.由式(3)和式(11)的相容性条件可得零曲率方程,UtnVx(n)+[UV(n)]=0,它等价于一个非线性演化方程族

$ {\left( {{u_{{t_n}}},{v_{{t_n}}}} \right)^{\rm{T}}} = \mathit{\boldsymbol{K}}{\mathit{\boldsymbol{S}}_n} = \mathit{\boldsymbol{J}}{\mathit{\boldsymbol{S}}_{n + 1}},n \ge 0. $ (12)

该方程族的前两个方程为

$ \left\{ {\begin{array}{*{20}{l}} {{u_{{t_0}}} = {\alpha _0}{u_x} + \frac{2}{3}{{\hat \alpha }_0}\left( {{u_x} + 3{v_x}} \right),}\\ {{v_{{t_0}}} = {\alpha _0}{v_x} - \frac{1}{3}{{\hat \alpha }_0}\left( {2{u_{xxx}} - 16u{u_x} + 6{v_x}} \right),} \end{array}} \right. $ (13)
$ \begin{array}{l} {u_{{t_1}}} = \frac{1}{{27}}{\alpha _0}\left( {6{u_{xxx}} + 9{v_{xxx}} - 48u{u_x} - 36{u_x}v - 36u{v_x} - 4{u_x} - 3{v_x}} \right) - \\ \frac{2}{{81}}{{\hat \alpha }_0}\left( {9{u_{xxxxx}} - 90u{u_{xxx}} - 9{u_{xxx}} - } \right.\\ \left. {225{u_x}{u_{xx}} + 180{u^2}{u_x} + 72u{u_x} + 4{u_x} + 9{v_{xxx}} + 135v{v_x} + 54{u_x}v + 54u{v_x} + 3{v_x}} \right);\\ {v_{{t_1}}} = \frac{1}{{81}}{{\hat \alpha }_0} \left( {6{u_{xxxxx}} - 18{v_{xxxxx}} + 180u{v_{xxx}} + 90{u_{xxv}}v - 12u{u_{xxx}}}\\ + 180{u_{xx}}{v_x} + 2{u_{xxx}} + 42{v_{xxx}} + 270{u_x}{v_{xx}} - \right.\\ \left. {144{u_x}{u_{xx}} + 252v{v_x} - 360{u^2}{v_x} - 720uv{u_x} - 288{u^2}{u_x} - 16u{u_x}} \right) -\\ \frac{1}{{27}}{\alpha _0}\left( {3{u_{xxxx}} + 6{v_{xxx}} - {u_{xxx}} - } \right.\\ \left. {36u{u_{xxx}} - 72{u_x}{u_{xx}} + 36v{v_x} + 96{u^2}{u_x} + 8u{u_x}} \right). \end{array} $ (14)

α0=0,$ \hat{\alpha}_{0}=3 $t0=t时,方程(13)约化为方程(1);当α0=27,$ \hat{\alpha}_{0}=0 $t1=t时,方程(14)约化为方程(2).

下面我们将推导式(13)和式(14)的无穷多守恒律.假设$\phi=\frac{\psi_{3, x}}{\psi_{3}} $, 由谱问题(3)可得Riccati方程

$ {\phi _{xx}} + 3\phi {\phi _x} - {\phi _x} + {\phi ^3} - {\phi ^2} - 2u\phi = {u_x} + v + \lambda . $ (15)

λ=η3$ \phi = \sum\limits_{j = - 1}^\infty {{\phi _j}} {\eta ^{ - j}}$, 把它们代入到方程(15),并比较λ的同次幂系数,可得ϕj的表达式

$ \begin{array}{l} {\phi _{ - 1}} = 1;{\phi _0} = \frac{1}{3};{\phi _1} = \frac{2}{3}u + \frac{1}{9};{\phi _2} = - \frac{1}{3}{u_x} + \frac{2}{9}u + \frac{1}{3}v + \frac{2}{{81}};{\phi _3} = \frac{1}{9}{u_{xx}} - \frac{2}{9}{u_x} - \frac{1}{3}{v_x};\\ {\phi _j} = \frac{1}{3}\\ \left( {\sum\limits_{l = - 1}^{j - 1} {{\phi _l}{\phi _{j - 2 - l}}} - \sum\limits_{\begin{array}{*{20}{c}} {l + m + n = j - 2}\\ { - 1 \le l,m,n < j} \end{array}} {{\phi _l}{\phi _m}{\phi _n}} - 3\sum\limits_{l = - 1}^{j - 1} {{\phi _l}{\phi _{j - 2 - l,x}}} + {\phi _{j - 2,x}} - {\phi _{j - 2,xx}} + 2u{\phi _{j - 2}}} \right),\\ j \ge 3. \end{array} $ (16)

另外,由辅谱问题可以得到

$ \frac{{{\psi _{3,t}}}}{{{\psi _3}}} = V_{31}^{(n)}\left( {{\phi ^2} + {\phi _x} - \phi - u} \right) + V_{32}^{(n)}\phi + V_{33}^{(n)}. $ (17)

定义θ=V31(n)(ϕ2+ϕxϕu)+V32(n)ϕ+V33(n),由$ \frac{\partial}{\partial_{t}} \frac{\psi_{3, x}}{\psi_{3}}=\frac{\partial}{\partial_{x}} \frac{\psi_{3, t}}{\psi_{3}}$可知ϕt=θx.

对于方程(13),当n=0时有$V_{31}^{(0)}=2 \hat{\alpha}_{0}$V32(0)=α0$ V_{33}^{(0)}=-\frac{1}{3} \alpha_{0}-\frac{2}{3} u \hat{\alpha}_{0} $.

ϕ的展开式和上式代入到式(17)中,可得

$ \begin{array}{*{20}{c}} {\theta = 2{{\hat \alpha }_0}{\eta ^2} + \left( {{\alpha _0} - \frac{2}{3}{{\hat \alpha }_0}} \right)\eta + \sum\limits_{j = 1}^\infty {{\theta _j}} {\eta ^{ - j}};}\\ {{\theta _1} = {\alpha _0}\left( {\frac{2}{3}u + \frac{1}{9}} \right) + 2{{\hat \alpha }_0}\left( {\frac{2}{9}u + \frac{2}{3}v + \frac{1}{{81}}} \right);{\theta _j} = 2{{\hat \alpha }_0}\left( {\sum\limits_{l = - 1}^{j + 1} {{\phi _l}} {\phi _{j - l}} +{\phi _{j,x}} - {\phi _j}} \right)\\ + {\alpha _0}{\phi _j},j \ge 1.} \end{array} $ (18)

我们把ϕθ的展开式中的系数ϕjθj叫作守恒密度及连带流.方程(13)的第一个守恒律为

$ {\left( {\frac{2}{3}u + \frac{1}{9}} \right)_{{t_0}}} = {\alpha _0}{\left( {\frac{2}{3}u + \frac{1}{9}} \right)_x} + 2{{\hat \alpha }_0}{\left( {\frac{2}{9}u + \frac{2}{3}v + \frac{1}{{81}}} \right)_x}. $ (19)

对于方程(14),当n=1时,

$ \begin{array}{l} V_{31}^{(1)} = - \frac{2}{3}{\alpha _0}u - \frac{4}{9}{{\hat \alpha }_0}(u + 3v) + 2{{\hat \alpha }_0}\lambda ;\\ V_{32}^{(2)} = \frac{1}{9}{\alpha _0}\left( {3{u_x} - 4u - 3v} \right) + {\alpha _0}\lambda + \frac{1}{{27}}{{\hat \alpha }_0}\left( {6{u_{xx}} + 6{u_x} - 24{u^2} - 8u + 18{v_x} - 6v} \right);\\ V_{33}^{(1)} = \frac{1}{{27}}{\alpha _0}\left( {3{u_x} - 3{u_{xx}} + 6{u^2} + 4u + 9{v_x} + 3v} \right) + \\ \frac{1}{{81}}{{\hat \alpha }_0}\left( {36{u^2} - 18{u_{xxx}} - 12{u_{xx}} + 144u{u_x} + } \right.\\ \left. {6{u_x} + 8u - 18{v_{xx}} + 6v + 36uv} \right) - \frac{1}{3}\left( {{\alpha _0} + 2u{{\hat \alpha }_0}} \right)\lambda . \end{array} $ (20)

此时

$ \begin{array}{l} \theta = 2{{\hat \alpha }_0}{\eta ^5} + \frac{1}{3}\left( {3{\alpha _0} - 2{{\hat \alpha }_0}} \right){\eta ^4} + \frac{1}{{81}}\left( {2{{\hat \alpha }_0} + 9{\alpha _0}} \right){\eta ^2} + \frac{1}{{243}}\left( {2{{\hat \alpha }_0} + 6{\alpha _0}} \right)\eta + \sum\limits_{j = 1}^\infty {{\theta _j}} {\eta ^{ - j}};\\ {\theta _1} = \frac{1}{{81}}{\alpha _0}\left( {12{u_{xx}} + 18{v_{xx}} - 48{u^2} - 72uv - 8u - 6v - \frac{2}{9}} \right) -\\ \frac{2}{{243}}{{\hat \alpha }_0}\left( {18{u_{xxxx}} - 180u{u_{xx}} - 18{u_{xx}} + 120{u^3} + } \right.\\ \left. {72{u^2} + 8u + 18{v_{xx}} - 135u_x^2 + 135{v^2} + 108uv + 6v + \frac{4}{{27}}} \right);\\ {\theta _j} = \left[ {\frac{1}{{27}}{{\hat \alpha }_0}\left( {6{u_{xx}} + 6{u_x} + 18{v_x} - 24{u^2} + 4u + 30v} \right) + \frac{1}{9}{\alpha _0}\left( {2u - 3v + 3{u_x}} \right)} \right]{\phi _j} +\\ 2{{\hat \alpha }_0}\left( {\sum\limits_{l = - 1}^{j + 4} {{\phi _l}{\phi _{j + 3 - l}}} + {\phi _{j + 3,x}}} \right) + \\ \left( {{\alpha _0} - 2{{\hat \alpha }_0}} \right){\phi _{j + 3}} - \left[ {\frac{2}{3}{\alpha _0}u + \frac{4}{9}{{\hat \alpha }_0}(u + 3v)} \right]\left( {\sum\limits_{l = - 1}^{j + 1} {{\phi _l}{\phi _{j - l}}} + {\phi _{j,x}}} \right),j \ge 1. \end{array} $ (21)

方程(14)的第一个守恒律为

$ \begin{array}{l} \left( {\frac{2}{3}u + \frac{1}{9}} \right){t_1} = \frac{1}{{81}}{\alpha _0}{\left( {12{u_{xx}} + 18{v_{xx}} - 48{u^2} - 72uv - 8u - 6v - \frac{2}{9}} \right)_x} -\\ \frac{2}{{243}}{{\hat \alpha }_0}\left( {18{u_{xxxx}} - 180u{u_{xx}} - 18{u_{xx}} + } \right.\\ {\left. {120{u^3} + 72{u^2} + 8u + 18{v_{xx}} - 135u_x^2 + 135{v^2} + 108uv + 6v + \frac{4}{{27}}} \right)_x}. \end{array} $ (22)
2 方程(1)的Darboux变换和精确解

本节,我们将通过Darboux变换给出方程(1)的精确解.该方程所满足的Lax方程为矩阵谱问题(3)和如下辅谱问题

$ {\mathit{\boldsymbol{\psi }}_t} = {\mathit{\boldsymbol{V}}^{(0)}}\mathit{\boldsymbol{\psi }} = \left( {\begin{array}{*{20}{c}} { - 2u}&{2{u_x} + 6v + 6\lambda }&{ - 2{u_{xx}} + 6{u^2} - 6v - 6\lambda }\\ 0&{4u}&{ - 2{u_z} + 6v + 6\lambda }\\ 6&0&{ - 2u} \end{array}} \right)\mathit{\boldsymbol{\psi }}. $ (23)

首先我们假设ψ(l)=(ψ1(l)ψ2(l)ψ3(l))T,1≤l≤3,是方程(3)和(23)的3个解,由此可以定义一个基解矩阵Ψ=(ψ(1)ψ(2)ψ(3)).接下来我们引入谱问题(3)和(23)的规范变换$ \mathit{\boldsymbol{ \boldsymbol{\varPsi} }} \to \mathit{\boldsymbol{ \boldsymbol{\widehat \varPsi} }}:\mathit{\boldsymbol{ \boldsymbol{\widehat \varPsi} }} = \mathit{\boldsymbol{T \boldsymbol{\varPsi} }} $.

其中:

$ \begin{array}{l} \mathit{\boldsymbol{T}} = \left( {\begin{array}{*{20}{c}} {{T_{11}}}&{{T_{12}}}&{{T_{13}}}\\ {{b_x} + c}&{\lambda + {c_x} + bu + c + d}&{\lambda b + {d_x} + bv + cu}\\ b&c&{\lambda + d} \end{array}} \right);\\ {T_{11}} = \lambda + {b_{xx}} + 2{c_x} + d - {b_x} - \frac{3}{2}b{b_x};\\ {T_{12}} = \lambda b + {c_{xx}} + 2{b_x}u + b{u_x} + {c_x} + 2{d_x} + bv + cu - \frac{3}{2}{b_x}c;\\ {T_{13}} = \lambda \left( {\frac{1}{2}{b_x} + c - b} \right) + {d_{xx}} + 2{b_x}v + b{v_x} + 2{c_x}u + c{u_x} + cv + b{u^2} - {d_x} - bv - \frac{3}{2}{b_x}d. \end{array} $ (24)

这里的bcd待定.通过计算可知det Tλ的三次多项式.令λ1λ2λ3是3个已知的任意参数,并且是det T的3个根,即det T=(λλ1)(λλ2)(λλ3).易知当λ=λi(i=1, 2, 3)时,$ \mathit{\boldsymbol{ \boldsymbol{\widehat \varPsi} }} $的列向量是线性相关的.因此,我们得到了下面的线性代数方程组

$ \begin{array}{l} {\lambda _i} + {b_{xx}} + 2{c_x} + d - {b_x} - \frac{3}{2}b{b_x} + \\ \left( {{\lambda _i}b + {c_{xx}} + 2{b_x}u + b{u_x} + {c_x} + 2{d_x} + bv + cu - \frac{3}{2}{b_x}c} \right) \sigma _1^{(i)} + \\ \left[ {{\lambda _i}\left( {\frac{1}{2}{b_x} + c - b} \right) + {d_{xx}} + 2{b_x}v + b{v_x} + 2{c_x}u + c{u_x} + cv + b{u^2} - {d_x} - bv - \frac{3}{2}{b_x}d} \right]\\ \sigma _2^{(i)} = 0, \end{array} $ (25)
$ {b_x} + c + \left( {{\lambda _i} + {c_x} + bu + c + d} \right)\sigma _1^{(i)} + \left( {{\lambda _i}b + {d_x} + bv + cu} \right)\sigma _2^{(i)} = 0, $ (26)
$ b + c\sigma _1^{(i)} + \left( {{\lambda _i} + d} \right)\sigma _2^{(i)} = 0, $ (27)

其中:

$ \sigma _1^{(i)} = \frac{{r_1^{(i)}\psi _2^{(1)}\left( {{\lambda _i}} \right) + r_2^{(i)}\psi _2^{(2)}\left( {{\lambda _i}} \right) + r_3^{(i)}\psi _2^{(3)}\left( {{\lambda _i}} \right)}}{{r_1^{(i)}\psi _1^{(1)}\left( {{\lambda _i}} \right) + r_2^{(i)}\psi _1^{(2)}\left( {{\lambda _i}} \right) + r_3^{(i)}\psi _1^{(3)}\left( {{\lambda _i}} \right)}};\sigma _2^{(i)} = \frac{{r_1^{(i)}\psi _3^{(1)}\left( {{\lambda _i}} \right) + r_2^{(i)}\psi _3^{(2)}\left( {{\lambda _i}} \right) + r_3^{(i)}\psi _3^{(3)}\left( {{\lambda _i}} \right)}}{{r_1^{(i)}\psi _1^{(1)}\left( {{\lambda _i}} \right) + r_2^{(i)}\psi _1^{(2)}\left( {{\lambda _i}} \right) + r_3^{(i)}\psi _1^{(3)}\left( {{\lambda _i}} \right)}}, $ (28)

rk(i)(i=1,2,3;k=1,2,3)是相关系数.通过计算,由式(27)可以推出式(26),由式(26)可以推出式(25).如果合理选择参数λirk(i),使得式(27)所确定的系数行列式非零,那么bcd由式(27)唯一确定.

定理1  在线性变换$ \mathit{\boldsymbol{\hat \psi }} = \mathit{\boldsymbol{T\psi }} $下,式(3)和式(23)被转换成$\mathit{\boldsymbol{\hat \psi }}$的两个3×3矩阵谱问题

$ {{\mathit{\boldsymbol{\hat \psi }}}_x} = \mathit{\boldsymbol{\hat U\hat \psi }},{{\mathit{\boldsymbol{\hat \psi }}}_t} = {{\mathit{\boldsymbol{\hat V}}}^{(0)}}\mathit{\boldsymbol{\hat \psi }}, $ (29)

其中:$ \hat{\boldsymbol{U}}=\left(\boldsymbol{T}_{x}+\boldsymbol{T} \boldsymbol{U}\right) \boldsymbol{T}^{-1} $$ \hat{\boldsymbol{V}}^{(0)}=\left(\boldsymbol{T}_{t}+\boldsymbol{T} \boldsymbol{V}^{(0)}\right) \boldsymbol{T}^{-1} $.

$ \mathit{\boldsymbol{\hat U}} = \left( {\begin{array}{*{20}{c}} 0&{\hat u}&{\lambda + \hat v}\\ 1&1&{\hat u}\\ 0&1&0 \end{array}} \right),{{\mathit{\boldsymbol{\hat V}}}^{(0)}} = \left( {\begin{array}{*{20}{c}} { - 2\hat u}&{2{{\hat u}_x} + 6\hat v + 6\lambda }&{ - 2{{\hat u}_{xx}} + 6{{\hat u}^2} - 6\hat v - 6\lambda }\\ 0&{4\hat u}&{ - 2{{\hat u}_x} + 6\hat v + 6\lambda }\\ 6&0&{ - 2\hat u} \end{array}} \right). $ (30)

新旧位势之间的变换公式为

$ \hat u = u + \frac{3}{2}{b_x};\hat v = v + \frac{3}{2}{b_{xx}} + 3{c_x} - 2{b_x} - 3b{b_x}. $ (31)

下面通过变换式(31),我们构造方程(1)的精确解.易见方程(27)可以改写为

$ \left\{ {\begin{array}{*{20}{l}} {b + c\sigma _1^{(1)} + d\sigma _2^{(1)} = - {\lambda _1}\sigma _2^{(1)},}\\ {b + c\sigma _1^{(2)} + d\sigma _2^{(2)} = - {\lambda _2}\sigma _2^{(2)},}\\ {b + c\sigma _1^{(3)} + d\sigma _2^{(3)} = - {\lambda _3}\sigma _2^{(3)},} \end{array}} \right. $ (32)

由克莱姆法则得

$ b = {\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}_1}/\mathit{\boldsymbol{ \boldsymbol{\varDelta} }};c = {\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}_2}/\mathit{\boldsymbol{ \boldsymbol{\varDelta} }};d = {\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}_3}/\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}, $ (33)

其中:

$ \mathit{\boldsymbol{ \boldsymbol{\varDelta} }} = \left| {\begin{array}{*{20}{c}} 1&{\sigma _1^{(1)}}&{\sigma _2^{(1)}}\\ 1&{\sigma _1^{(2)}}&{\sigma _2^{(2)}}\\ 1&{\sigma _1^{(3)}}&{\sigma _2^{(3)}} \end{array}} \right|;{\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}_1} = \left| {\begin{array}{*{20}{c}} { - {\lambda _1}\sigma _2^{(1)}}&{\sigma _1^{(1)}}&{\sigma _2^{(1)}}\\ { - {\lambda _2}\sigma _2^{(2)}}&{\sigma _1^{(2)}}&{\sigma _2^{(2)}}\\ { - {\lambda _3}\sigma _2^{(3)}}&{\sigma _1^{(3)}}&{\sigma _2^{(3)}} \end{array}} \right|; \\ {\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}_2} = \left| {\begin{array}{*{20}{c}} 1&{ - {\lambda _1}\sigma _2^{(1)}}&{\sigma _2^{(1)}}\\ 1&{ - {\lambda _2}\sigma _2^{(2)}}&{\sigma _2^{(2)}}\\ 1&{ - {\lambda _3}\sigma _2^{(3)}}&{\sigma _2^{(3)}} \end{array}} \right|;{\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}_3} = \left| {\begin{array}{*{20}{c}} 1&{\sigma _1^{(1)}}&{ - {\lambda _1}\sigma _2^{(1)}}\\ 1&{\sigma _1^{(2)}}&{ - {\lambda _2}\sigma _2^{(2)}}\\ 1&{\sigma _1^{(3)}}&{ - {\lambda _3}\sigma _2^{(3)}} \end{array}} \right|. $

合理选择λirk(i)使得式(32)所确定的方程的系数行列式Δ≠0.把式(33)代入式(31),我们可以把Darboux变换的显式形式表示为

$ \begin{array}{l} \hat u = u + f(x,t,\lambda ) = u + \frac{3}{2}{\left( {{\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}_1}/\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}} \right)_x};\\ \hat v = v + h(x,t,\lambda ) = v + \frac{3}{2}{\left( {{\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}_1}/\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}} \right)_{xx}} + 3{\left( {{\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}_2}/\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}} \right)_x} - 2{\left( {{\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}_1}/\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}} \right)_x} - 3\left( {{\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}_1}/\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}} \right){\left( {{\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}_1}/\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}} \right)_x}. \end{array} $ (34)

1) 取u=0,v=-λ时,式(3)和式(23)有基解矩阵

$ \mathit{\boldsymbol{ \boldsymbol{\varPsi} }} = \left( {\begin{array}{*{20}{c}} 0&{ - 1}&0\\ 0&1&{{{\rm{e}}^x}}\\ 1&{x - 6t}&{{{\rm{e}}^x}} \end{array}} \right). $ (35)

通过Darboux变换式(31),我们得到方程(1)的一个精确解$\hat{u}=f(x, t, \lambda)$$ \hat{v}=h(x, t, \lambda)-\lambda $.

2) 取$u=-\frac{1}{2} \lambda$v=0(λ>0)时,式(3)和式(23)有基解矩阵(其中$A=\sqrt{\lambda}(x-6 t) $)

$ \mathit{\boldsymbol{ \boldsymbol{\varPsi} }} = \left( {\begin{array}{*{20}{c}} {\frac{1}{2}\lambda {{\rm{e}}^{x + 4\lambda t}}}&{\frac{1}{2}{{\rm{e}}^{ - 2\lambda t}}(2\sqrt \lambda \sin A - \lambda \cos A)}&{ - \frac{1}{2}{{\rm{e}}^{ - 2\lambda t}}(\lambda \sin A + 2\sqrt \lambda \cos A)}\\ {{{\rm{e}}^{x + 4\lambda t}}}&{ - \sqrt \lambda {{\rm{e}}^{ - 2\lambda t}}\sin A}&{\sqrt \lambda {{\rm{e}}^{ - 2\lambda t}}\cos A}\\ {{{\rm{e}}^{x + 4\lambda t}}}&{{{\rm{e}}^{ - 2\lambda t}}\cos A}&{{{\rm{e}}^{ - 2\lambda t}}\sin A} \end{array}} \right). $ (36)

通过Darboux变换式(31),我们得到方程(1)的一个精确解$ \hat{u}=f(x, t, \lambda)-\frac{1}{2} \lambda $$ \hat{v}=h(x, t, \lambda) $.

3) 取$ u=\frac{1}{2} \lambda $v=-2λ(λ>0)时,式(3)和式(23)有基解矩阵(其中$ A=\sqrt{\lambda}(x-6 t) $)

$ \mathit{\boldsymbol{ \boldsymbol{\varPsi} }} = \left( {\begin{array}{*{20}{c}} { - \frac{1}{2}\lambda {{\rm{e}}^{x - 4\lambda t}}}&{\frac{1}{2}(\lambda - 2\sqrt \lambda ){{\rm{e}}^{A + 2\lambda t}}}&{\frac{1}{2}(\lambda + 2\sqrt \lambda ){{\rm{e}}^{ - A + 2\lambda t}}}\\ {{{\rm{e}}^{x - 4\lambda t}}}&{\sqrt \lambda {{\rm{e}}^{A + 2\lambda t}}}&{ - \sqrt \lambda {{\rm{e}}^{ - A + 2\lambda t}}}\\ {{{\rm{e}}^{x - 4\lambda t}}}&{{{\rm{e}}^{A + 2\lambda t}}}&{{{\rm{e}}^{ - A + 2\lambda t}}} \end{array}} \right). $ (37)

通过Darboux变换式(31),我们得到方程(1)的一个精确解$\hat{u}=f(x, t, \lambda)+\frac{1}{2} \lambda$$ \hat{v}=h(x, t, \lambda)-2 \lambda $.

4) 取u=0,v=0时,式(3)和式(23)有基解矩阵

$ \mathit{\boldsymbol{ \boldsymbol{\varPsi} }} = \left( {\begin{array}{*{20}{c}} {\left( {k_1^2 - {k_1}} \right){{\rm{e}}^{{\mathit{\Gamma }_1}}}}&{\psi _1^{(2)}}&{\psi _1^{(3)}}\\ {{k_1}{{\rm{e}}^{{\mathit{\Gamma }_1}}}}&{\psi _2^{(2)}}&{\psi _2^{(3)}}\\ {{{\rm{e}}^{{\mathit{\Gamma }_1}}}}&{{{\rm{e}}^{{\mathit{\Gamma }_2}}}\cos {\mathit{\Gamma }_3}}&{{{\rm{e}}^{{\mathit{\Gamma }_2}}}\sin {\mathit{\Gamma }_3}} \end{array}} \right), $ (38)
$ \psi _1^{(2)} = \frac{1}{9}{{\rm{e}}^{{\mathit{\Gamma }_2}}}\left[ {\left( {k_2^2 - k_3^2 - 3{k_2}} \right)\cos {\mathit{\Gamma }_3} - \left( {2{k_2}{k_3} - 3{k_3}} \right)\sin {\mathit{\Gamma }_3}} \right],\psi _2^{(2)} = \frac{1}{3}{{\rm{e}}^{{\mathit{\Gamma }_2}}}\\ \left( {{k_2}\cos {\mathit{\Gamma }_3} -{k_3}\sin {\mathit{\Gamma }_3}} \right), $
$ \psi _1^{(3)} = \frac{1}{9}{{\rm{e}}^{{\mathit{\Gamma }_2}}}\left[ {\left( {k_2^2 - k_3^2 - 3{k_2}} \right)\sin {\mathit{\Gamma }_3} + \left( {2{k_2}{k_3} - 3{k_3}} \right)\cos {\mathit{\Gamma }_3}} \right],\psi _2^{(3)} = \frac{1}{3}{{\rm{e}}^{^{{\mathit{\Gamma }_2}}}}\\ \left( {{k_2}\sin {\mathit{\Gamma }_3} + {k_3}\cos {\mathit{\Gamma }_3}} \right), $
$ \mathit{\Gamma } = {\left( {\frac{2}{{2 + 27\lambda + 3\sqrt {12\lambda + 81{\lambda ^2}} }}} \right)^{\frac{1}{3}}},{k_1} = \frac{1}{3}\left( {1 + \mathit{\Gamma } + \frac{1}{\mathit{\Gamma }}} \right),{k_2} = 1 - \frac{\mathit{\Gamma }}{2} - \frac{1}{{2\mathit{\Gamma }}},{k_3} = - \frac{{\sqrt 3 }}{2}\left( {\mathit{\Gamma } - \frac{1}{\mathit{\Gamma }}} \right), $
$ {\mathit{\Gamma }_1} = \frac{1}{3}\left( {1 + \mathit{\Gamma } + \frac{1}{\mathit{\Gamma }}} \right)x + \frac{2}{3}(\mathit{\Gamma } - 1)\left( {\mathit{\Gamma } - \frac{1}{{{\mathit{\Gamma }^2}}}} \right)t,{\mathit{\Gamma }_2} = \frac{1}{3}{k_2}x + \frac{2}{3}\left( {k_2^2 - k_3^2 - 3{k_2}} \right)t, $
$ {\mathit{\Gamma }_3} = \frac{1}{3}{k_3}x + \frac{2}{3}\left( {2{k_2}{k_3} - 3{k_3}} \right)t. $

通过Darboux变换式(31),我们得到方程(1)的一个精确解$ \hat{u}=f(x, t, \lambda) $$ \hat{v}=h(x, t, \lambda) $.

3 结论

本文我们引入了一个具有两个位势的3×3矩阵谱问题,通过该问题及其辅助谱问题得到了一个新的微分方程族.基于特征函数的Riccati方程,我们推导出该方程族前两个方程的无穷多守恒律,并借助于Darboux变换得到了第一个非平凡方程的一些显式解.关于这个非线性演化方程族的孤子解、Bäcklund变换、代数几何解和其他的一些性质,我们将在以后的文章中进行讨论.

参考文献
[1]
HE G L, GENG X G. An extension of the modified Sawada-Kotera equation and conservation laws[J]. Chin Phys B, 2012, 21(7): 070205. (0)
[2]
GENG X G, ZHAI Y Y. An extension of integrable equations related to AKNS and WKI spectral problems and their reductions[J]. Chin Phys B, 2018, 27(4): 040201. DOI:10.1088/1674-1056/27/4/040201 (0)
[3]
ABLOWITZ M A, CLARKSON P A. Solitons, nonlinear evolution equations and inverse scattering[M]. Cambridge: Cambridge University Press, 1991. (0)
[4]
MAEDA M, SASAKI H, SEGAWA E, et al. Scattering and inverse scattering for nonlinear quantum walks[J]. Discret Contin Dyn Syst A, 2018, 38(7): 3687-3703. DOI:10.3934/dcds.2018159 (0)
[5]
GESZTESY F, HOLDEN H, JOHANNA M, et al. Soliton equations and their algebro-geometric solutions[M]. Cambridge: Cambridge University Press, 2003. (0)
[6]
BELOKOLOS E D, BOBENKO A I, ENOLSKⅡ V Z, et al. Algebro-geometric approach to nonlinear integrable equations[M]. Berlin: Springer, 1994. (0)
[7]
HE G L, GENG X G, WU L H. Algebro-geometric quasi-periodic solutions to the three-wave resonant interaction hierarchy[J]. SIAM J Math Analy, 2014, 46(2): 1348-1384. DOI:10.1137/130918794 (0)
[8]
MATVEEV V B, SALLE M A. Darboux transformations and solitons[M]. Berlin: Springer, 1991. (0)
[9]
GENG X G, HE G L. Some new integrable nonlinear evolution equations and Darboux transformation[J]. J Math Phys, 2010, 51(3): 033514. DOI:10.1063/1.3355192 (0)
[10]
IZOSIMOV A. Algebraic geometry and stability for integrable systems[J]. Phys D, 2015, 291: 74-82. DOI:10.1016/j.physd.2014.10.006 (0)
[11]
YANG X J, GAO F, SRIVASTAVA H M. Exact travelling wave solutions for the local fractional two-dimensional Burgers-type equations[J]. Comput Math Appl, 2017, 73(2): 203-210. DOI:10.1016/j.camwa.2016.11.012 (0)
[12]
NIZOVTSEVA I G, GALENKO P K, ALEXANDROV D V. Travelling wave solutions for the hyperbolic Cahn-Allen equation[J]. Chaos Soliton Fract, 2017, 94: 75-79. (0)
[13]
FAN E G. Extended tanh-function method and its applications to nonlinear equations[J]. Phys Lett A, 2000, 277(4/5): 212-218. (0)
[14]
ZHAO H Q, YUAN J Y, ZHU Z N. Integrable semi-discrete Kundu-Eckhaus equation: Darboux transformation, breather, rogue wave and continuous limit theory[J]. J Nonlinear Sci, 2018, 28(1): 43-68. DOI:10.1007/s00332-017-9399-9 (0)
[15]
TIAN S F, ZHANG H Q. On the integrability of a generalized variable-coefficient forced Kortewegde Vries equation in fluids[J]. Stud Appl Math, 2014, 132(3): 212-246. DOI:10.1111/sapm.12026 (0)
[16]
GENG X G, LV Y Y. Darboux transformation for an integrable generalization of the nonlinear Schrodinger equation[J]. Nonlinear dynamics, 2012, 69(4): 1621-1630. (0)