郑州大学学报(理学版)  2017, Vol. 49 Issue (1): 11-16, 23  DOI: 10.13705/j.issn.1671-6841.2016207

引用本文  

范素军, 赵瑞斌, 关玥, 等. 一类四维李代数的Rota-Baxter算子[J]. 郑州大学学报(理学版), 2017, 49(1): 11-16, 23.
FAN Sujun, ZHAO Ruibin, GUAN Yue, et al. Rota-Baxter Operators on a Class of 4-dimensional Solvable Lie Algebras[J]. Journal of Zhengzhou University(Natural Science Edition), 2017, 49(1): 11-16, 23.

基金项目

河北省自然科学基金项目(A2010000194);河北省教育厅科学研究计划项目(Z2015010)

通信作者

作者简介

范素军(1981-), 女, 河北石家庄人, 讲师, 主要从事应用数学、代数学和统计学研究, E-mail:fanny7138@163.com

文章历史

收稿日期:2016-08-22
一类四维李代数的Rota-Baxter算子
范素军1 , 赵瑞斌2 , 关玥3 , 吴艳茹2 , 王敏彦1     
1. 河北医科大学 数学教研室 河北 石家庄 050017;
2. 河北医科大学 物理教研室 河北 石家庄 050017;
3. 河北医科大学 基础医学院 河北 石家庄 050017
摘要:随着李代数及相关代数理论的发展,Rota-Baxter算子在数学物理中得到广泛应用.给出了复数域上导代数维数等于一的四维李代数的分类,对得到的每一类李代数的权为零的Rota-Baxter算子结构进行了研究,给出了权为零的Rota-Baxter算子的完全分类,并给出了每一个Rota-Baxter算子的具体表示.
关键词李代数    Rota-Baxter算子    导代数    
Rota-Baxter Operators on a Class of 4-dimensional Solvable Lie Algebras
FAN Sujun1 , ZHAO Ruibin2 , GUAN Yue3 , WU Yanru2 , WANG Minyan1     
1. Department of Medical Mathematics, Hebei Medical University, Shijiazhuang 050017, China;
2. Department of Physics, Hebei Medical University, Shijiazhuang 050017, China;
3. College of Basic Medical, Hebei Medical University, Shijiazhuang 050017, China
Abstract: With the development of Lie algebra and related algebra theory, Rota-Baxter operator was widely used in mathematics and physics. The classification of 4-dimensional Lie algebra with one-dimensional derived algebra over the complex number field was given, and the completely classification ofRota-Baxter operators with weight zero on the Lie algebra was also given, and the concrete expression of each Rota-Baxter operators of weight zero was provided as well.
Key words: Lie algebra    Rota-Baxter operator    derived algebra    
0 引言

可解李代数的结构在李代数的结构研究中起着非常重要的作用[1-3],随着李代数理论的不断发展和完善,其理论与方法已逐步渗透到数学物理的许多领域.文献[4]研究了Rota-Bater李代数在理论物理上的应用.文献[5]给出了导代数维数等于一的二维和三维李代数,且权为零的Rota-Baxter算子的具体表达式, 并通过Rota-Baxter算子的可逆性讨论了李代数的幂零性.李代数的Rota-Baxter算子与经典的Yang-Baxter方程的解从另一方面反映出李代数的代数结构[5-8].近几年Rota-Baxter代数在Yang-Baxter方程、Hopf代数、微分代数、量子域理论等方面也得到很好的应用[9-12].本文研究复数域上导代数维数等于一的四维可解李代数的权为零的Rota-Baxter算子的结构.

L是域F上的线性空间,如果在L上存在斜对称的二元线性运算: [, ]:L×LL,满足对任意x, y, zL, [x, [y, z]]=[[x, y], z]+[y, [x, z]],则称L是域F上的李代数.L的由所有[x, y]生成的子代数,称为李代数L的导代数,记为L1.对每个自然数s,记L(s+1)=[L(s), L(s)],如果存在自然数s,使得L(s)=0,则称L是可解的李代数.显然,如果L是导代数维数等于一的李代数,则L是可解李代数.设L是域F上的李代数,λF,如果线性变换P:LL满足下列等式,则称P为李代数L的权为λ的Rota-Baxter算子.对任意x, yL,

$ \left[ {P\left( x \right),P\left( y \right)} \right] = P\left( {\left[ {P\left( x \right),y} \right] + \left[ {x,P\left( y \right)} \right]} \right) + \lambda P\left[ {x,y} \right]. $ (1)

如果λ=0,则称P为李代数L的权为零的Rota-Baxter算子,以下简称P为李代数L的Rota-Baxter算子.

命题1  线性变换P:LL为李代数L的权为零的Rota-Baxter算子的充要条件是,P/α为李代数L的权为零Rota-Baxter算子,其中α为域F中任意非零的数.

证明  由等式(1) 知,λ=0时,P为李代数L的权为零的Rota-Baxter算子的充要条件是,[P(x), P(y)]=P([P(x), y]+[x, P(y)])成立.显然,此等式成立的充要条件是,两边都乘以非零数k, 等式仍然成立.

1 主要结论

在本文中,主要讨论复数域C上的李代数.

引理1[7]  设L是复数域C上导代数维数等于一的李代数,x1, x2, x3, x4L的一组基, 则在同构的意义下仅有下面3类:

$ {L_1}:\left[ {{x_1},{x_2}} \right] = {x_3};\;\;\;\;\;{L_2}:\left[ {{x_1},{x_2}} \right] = {x_2};\;\;\;\;{L_3}:\left\{ \begin{array}{l} \left[ {{x_1},{x_2}} \right] = {x_3},\\ \left[ {{x_1},{x_3}} \right] = {x_3}. \end{array} \right. $

为了讨论李代数L的Rota-Baxter算子,首先引入下面一些符号.设P:LL是权为零的Rota-Baxter算子, P在基x1, x2, x3, x4表示为

$ P\left( {{x_i}} \right) = \sum\limits_{j = 1}^4 {{a_{ij}}{x_j}} ,\;\;\;1 \le i \le 4, $ (2)

P在基x1, x2, x3, x4下的矩阵为$\boldsymbol{A}{\rm{ = }}\left( \begin{gathered} {a_{11}}\;\;{a_{12}}\;\;{a_{13}}\;\;{a_{14}} \hfill \\ {a_{21}}\;\;{a_{22}}\;\;{a_{23}}\;\;{a_{24}} \hfill \\ {a_{31}}\;\;{a_{32}}\;\;{a_{33}}\;\;{a_{34}} \hfill \\ {a_{41}}\;\;{a_{42}}\;\;{a_{43}}\;\;{a_{44}} \hfill \\ \end{gathered} \right) $.

定理1  设L是引理1中的四维李代数L1, 设P:LL是线性变换,PL的权为零的Rota-Baxter算子的充要条件是P=0或P在基x1, x2, x3, x4下的矩阵为下列情形之一:

$ {\mathit{\boldsymbol{A}}_1} = \left( {\begin{array}{*{20}{c}} 0&0&{{a_{13}}}&{{a_{14}}}\\ 0&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&{{a_{33}}}&{{a_{34}}}\\ 0&0&1&{{a_{44}}} \end{array}} \right);{\mathit{\boldsymbol{A}}_2} = \left( {\begin{array}{*{20}{c}} 0&0&{{a_{13}}}&{{a_{14}}}\\ {{a_{21}}}&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&{{a_{33}}}&{{a_{34}}}\\ 0&0&1&{{a_{44}}} \end{array}} \right),{a_{21}} \ne 0;\\ {\mathit{\boldsymbol{A}}_3} = \left( {\begin{array}{*{20}{c}} 0&{{a_{12}}}&{{a_{13}}}&{{a_{14}}}\\ 0&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&{{a_{33}}}&{{a_{34}}}\\ 0&0&1&{{a_{44}}} \end{array}} \right),{a_{12}} \ne 0; $
$ {\mathit{\boldsymbol{A}}_4} = \left( {\begin{array}{*{20}{c}} 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&1 \end{array}} \right);{\mathit{\boldsymbol{A}}_5} = \left( {\begin{array}{*{20}{c}} 0&0&0&0\\ 0&0&0&0\\ 0&0&0&1\\ 0&0&0&{{a_{44}}} \end{array}} \right);\\ {\mathit{\boldsymbol{A}}_6} = \left( {\begin{array}{*{20}{c}} 0&0&0&0\\ 0&0&0&1\\ 0&0&0&{{a_{34}}}\\ 0&0&0&{{a_{44}}} \end{array}} \right);{\mathit{\boldsymbol{A}}_7} = \left( {\begin{array}{*{20}{c}} 0&0&0&1\\ 0&0&0&{{a_{24}}}\\ 0&0&0&{{a_{34}}}\\ 0&0&0&{{a_{44}}} \end{array}} \right); $
$ {\mathit{\boldsymbol{A}}_8} = \left( {\begin{array}{*{20}{c}} 0&0&0&{{a_{14}}}\\ 0&0&0&{{a_{24}}}\\ 0&0&0&{{a_{34}}}\\ 0&0&0&{{a_{44}}} \end{array}} \right);{\mathit{\boldsymbol{A}}_9} = \left( {\begin{array}{*{20}{c}} 0&0&1&{{a_{14}}}\\ 0&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&0&{{a_{34}}}\\ 0&0&0&{{a_{44}}} \end{array}} \right);\\ {\mathit{\boldsymbol{A}}_{10}} = \left( {\begin{array}{*{20}{c}} 0&0&{{a_{13}}}&{{a_{14}}}\\ 0&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&1&{{a_{34}}}\\ 0&0&0&{{a_{44}}} \end{array}} \right);{\mathit{\boldsymbol{A}}_{11}} = \left( {\begin{array}{*{20}{c}} 0&0&{{a_{13}}}&{{a_{14}}}\\ 0&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&1&{{a_{34}}}\\ {{a_{41}}}&0&0&{{a_{44}}} \end{array}} \right),{a_{41}} \ne 0; $
$ {\mathit{\boldsymbol{A}}_{12}} = \left( {\begin{array}{*{20}{c}} 0&0&{{a_{13}}}&{{a_{14}}}\\ 0&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&1&{{a_{34}}}\\ 0&{{a_{42}}}&0&{{a_{44}}} \end{array}} \right),{a_{42}} \ne 0;{\mathit{\boldsymbol{A}}_{13}} = \left( {\begin{array}{*{20}{c}} 0&0&{{a_{13}}}&{{a_{14}}}\\ 0&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&0&{{a_{34}}}\\ {{a_{41}}}&1&0&{{a_{44}}} \end{array}} \right);\\ {\mathit{\boldsymbol{A}}_{14}} = \left( {\begin{array}{*{20}{c}} 0&0&{{a_{13}}}&{{a_{14}}}\\ 0&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&0&{{a_{34}}}\\ 1&0&0&{{a_{44}}} \end{array}} \right);{\mathit{\boldsymbol{A}}_{15}} = \left( {\begin{array}{*{20}{c}} 0&1&{{a_{13}}}&{{a_{14}}}\\ 0&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&0&{{a_{34}}}\\ 0&0&0&{{a_{44}}} \end{array}} \right); $
$ {\mathit{\boldsymbol{A}}_{16}} = \left( {\begin{array}{*{20}{c}} 0&1&{{a_{13}}}&{{a_{14}}}\\ 0&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&{{a_{33}}}&{{a_{34}}}\\ 0&0&0&{{a_{44}}} \end{array}} \right),{a_{33}} \ne 0;{\mathit{\boldsymbol{A}}_{17}} = \left( {\begin{array}{*{20}{c}} 0&1&{{a_{13}}}&{{a_{14}}}\\ 0&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&{{a_{33}}}&{{a_{34}}}\\ {{a_{41}}}&0&0&{{a_{44}}} \end{array}} \right),{a_{33}} \ne 0,{a_{41}} \ne 0;\\ {\mathit{\boldsymbol{A}}_{18}} = \left( {\begin{array}{*{20}{c}} 0&1&{{a_{13}}}&{{a_{14}}}\\ 0&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&{{a_{33}}}&{{a_{34}}}\\ 0&{{a_{42}}}&0&{{a_{44}}} \end{array}} \right),{a_{33}} \ne 0,{a_{42}} \ne 0; $
$ {\mathit{\boldsymbol{A}}_{19}} = \left( {\begin{array}{*{20}{c}} 0&1&{{a_{13}}}&{{a_{14}}}\\ 0&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&0&{{a_{34}}}\\ {{a_{41}}}&{{a_{42}}}&0&{{a_{44}}} \end{array}} \right),{a_{41}} \ne 0,{a_{42}} \ne 0;{\mathit{\boldsymbol{A}}_{20}} = \left( {\begin{array}{*{20}{c}} 0&1&{{a_{13}}}&{{a_{14}}}\\ 0&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&0&{{a_{34}}}\\ {{a_{41}}}&0&0&{{a_{44}}} \end{array}} \right),{a_{41}} \ne 0;\\ {\mathit{\boldsymbol{A}}_{21}} = \left( {\begin{array}{*{20}{c}} 0&1&{{a_{13}}}&{{a_{14}}}\\ 0&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&0&{{a_{34}}}\\ 0&{{a_{42}}}&0&{{a_{44}}} \end{array}} \right),{a_{42}} \ne 0; $
$ {\mathit{\boldsymbol{A}}_{22}} = \left( {\begin{array}{*{20}{c}} 0&0&{{a_{13}}}&{{a_{14}}}\\ 1&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&0&{{a_{34}}}\\ 0&0&0&{{a_{44}}} \end{array}} \right);{\mathit{\boldsymbol{A}}_{23}} = \left( {\begin{array}{*{20}{c}} 0&0&{{a_{13}}}&{{a_{14}}}\\ 1&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&{{a_{33}}}&{{a_{34}}}\\ 0&0&0&{{a_{44}}} \end{array}} \right),{a_{33}} \ne 0,\\ {\mathit{\boldsymbol{A}}_{24}} = \left( {\begin{array}{*{20}{c}} 0&0&{{a_{13}}}&{{a_{14}}}\\ 1&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&{{a_{33}}}&{{a_{34}}}\\ {{a_{41}}}&0&0&{{a_{44}}} \end{array}} \right),{a_{33}} \ne 0,{a_{41}} \ne 0; $
$ {\mathit{\boldsymbol{A}}_{25}} = \left( {\begin{array}{*{20}{c}} 0&0&{{a_{13}}}&{{a_{14}}}\\ 1&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&{{a_{33}}}&{{a_{34}}}\\ 0&{{a_{42}}}&0&{{a_{44}}} \end{array}} \right),{a_{33}} \ne 0,{a_{42}} \ne 0;\\ {\mathit{\boldsymbol{A}}_{26}} = \left( {\begin{array}{*{20}{c}} 0&0&{{a_{13}}}&{{a_{14}}}\\ 1&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&0&{{a_{34}}}\\ {{a_{41}}}&{{a_{42}}}&0&{{a_{44}}} \end{array}} \right),{a_{41}} \ne 0,{a_{42}} \ne 0; $
$ {\mathit{\boldsymbol{A}}_{27}} = \left( {\begin{array}{*{20}{c}} 0&0&{{a_{13}}}&{{a_{14}}}\\ 1&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&0&{{a_{34}}}\\ {{a_{41}}}&0&0&{{a_{44}}} \end{array}} \right),{a_{41}} \ne 0;{\mathit{\boldsymbol{A}}_{28}} = \left( {\begin{array}{*{20}{c}} 0&0&{{a_{13}}}&{{a_{14}}}\\ 1&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&0&{{a_{34}}}\\ 0&{{a_{42}}}&0&{{a_{44}}} \end{array}} \right),{a_{42}} \ne 0;\\ {\mathit{\boldsymbol{A}}_{29}} = \left( {\begin{array}{*{20}{c}} 0&{{a_{12}}}&{{a_{13}}}&{{a_{14}}}\\ { - 1/{a_{12}}}&{ - 1}&{{a_{23}}}&{{a_{24}}}\\ 0&0&0&{{a_{34}}}\\ 0&0&0&{{a_{44}}} \end{array}} \right),{a_{12}} \ne 0,{a_{34}} \ne 0; $
$ {\mathit{\boldsymbol{A}}_{30}} = \left( {\begin{array}{*{20}{c}} 1&{{a_{12}}}&{{a_{13}}}&{{a_{14}}}\\ { - 1/{a_{12}}}&{ - 1}&{{a_{23}}}&{{a_{24}}}\\ 0&0&0&0\\ {{a_{41}}}&{{a_{42}}}&{{a_{43}}}&{{a_{44}}} \end{array}} \right),{a_{12}} \ne 0;{\mathit{\boldsymbol{A}}_{31}} = \left( {\begin{array}{*{20}{c}} 1&{{a_{12}}}&{{a_{13}}}&{{a_{14}}}\\ { - 1/{a_{12}}}&{ - 1}&{{a_{23}}}&{{a_{24}}}\\ 0&0&{{a_{33}}}&0\\ {{a_{41}}}&{{a_{12}}}&{{a_{41}}}&{{a_{43}}} \end{array}} \right),{a_{12}} \ne 0; $
$ {\mathit{\boldsymbol{A}}_{32}} = \left( {\begin{array}{*{20}{c}} 0&0&{{a_{13}}}&{{a_{14}}}\\ 0&1&{{a_{23}}}&{{a_{24}}}\\ 0&0&0&0\\ {{a_{41}}}&0&{{a_{43}}}&{{a_{44}}} \end{array}} \right);{\mathit{\boldsymbol{A}}_{33}} = \left( {\begin{array}{*{20}{c}} 0&{{a_{12}}}&{{a_{13}}}&{{a_{14}}}\\ 0&1&{{a_{23}}}&{{a_{24}}}\\ 0&0&0&0\\ {{a_{41}}}&0&{{a_{43}}}&{{a_{44}}} \end{array}} \right),{a_{12}} \ne 0;\\ {\mathit{\boldsymbol{A}}_{34}} = \left( {\begin{array}{*{20}{c}} 0&0&{{a_{13}}}&{{a_{14}}}\\ {{a_{21}}}&{ - 1}&{{a_{23}}}&{{a_{24}}}\\ 0&0&{{a_{33}}}&0\\ {{a_{41}}}&{{a_{12}}}&{{a_{41}}}&{{a_{43}}} \end{array}} \right),{a_{12}} \ne 0; $
$ {\mathit{\boldsymbol{A}}_{35}} = \left( {\begin{array}{*{20}{c}} 0&{{a_{12}}}&{{a_{13}}}&{{a_{14}}}\\ { - {a_{33}}/{a_{12}}}&1&{{a_{23}}}&{{a_{24}}}\\ 0&0&{{a_{33}}}&0\\ 0&0&{{a_{41}}}&{{a_{44}}} \end{array}} \right),{a_{12}} \ne 0,{a_{33}} \ne 0;{\mathit{\boldsymbol{A}}_{36}} = \left( {\begin{array}{*{20}{c}} 1&0&{{a_{13}}}&{{a_{14}}}\\ {{a_{21}}}&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&0&0\\ {{a_{41}}}&0&{{a_{43}}}&{{a_{44}}} \end{array}} \right); $
$ {\mathit{\boldsymbol{A}}_{37}} = \left( {\begin{array}{*{20}{c}} 1&{{a_{12}}}&{{a_{13}}}&{{a_{14}}}\\ {\left( {{a_{12}}{a_{22}}} \right)/{a_{12}}}&{{a_{22}}}&{{a_{23}}}&{{a_{24}}}\\ 0&0&0&0\\ {{a_{42}}/{a_{12}}}&{{a_{42}}}&{{a_{43}}}&{{a_{44}}} \end{array}} \right),{a_{12}} \ne 0,{a_{22}} \ne - 1;\\ {\mathit{\boldsymbol{A}}_{38}} = \left( {\begin{array}{*{20}{c}} 1&0&{{a_{13}}}&{{a_{14}}}\\ {{a_{21}}}&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&{{a_{33}}}&0\\ 0&0&{{a_{43}}}&{{a_{44}}} \end{array}} \right),{a_{33}} \ne 0; $
$ {\mathit{\boldsymbol{A}}_{39}} = \left( {\begin{array}{*{20}{c}} 1&0&{{a_{13}}}&{{a_{14}}}\\ {{a_{21}}}&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&{{a_{33}}}&0\\ {\left( { - {a_{21}}{a_{42}}} \right)/{a_{33}}}&{{a_{42}}}&{{a_{43}}}&{{a_{44}}} \end{array}} \right),{a_{33}} \ne 0;\\ {\mathit{\boldsymbol{A}}_{40}}\left( {\begin{array}{*{20}{c}} 1&{{a_{12}}}&{{a_{13}}}&{{a_{14}}}\\ { - a_{22}^2/{a_{12}}}&{{a_{22}}}&{{a_{23}}}&{{a_{24}}}\\ 0&0&{{a_{22}}}&0\\ 0&0&{{a_{43}}}&{{a_{44}}} \end{array}} \right),{a_{22}} \ne - 1,{a_{22}} \ne 0,{a_{12}} \ne 0; $
$ {\mathit{\boldsymbol{A}}_{41}}\left( {\begin{array}{*{20}{c}} 1&{{a_{12}}}&{{a_{13}}}&{{a_{14}}}\\ {\left( {{a_{22}} - {a_{33}} - {a_{22}}{a_{33}}} \right)/{a_{12}}}&{{a_{22}}}&{{a_{23}}}&{{a_{24}}}\\ 0&0&{{a_{33}}}&0\\ 0&0&{{a_{43}}}&{{a_{44}}} \end{array}} \right),{a_{22}} \ne {a_{33}},{a_{33}} \ne 0,{a_{22}} \ne - 1,{a_{12}} \ne 0. $

证明  设L是李代数L1P:LL是权为零的Rota-Baxter算子,P在基x1, x2, x3, x4的表示为等式(2).显然,P=0是Rota-Baxter算子.如果P≠0,由权为零的Rota-Baxter算子的定义、等式(1) 及L1的乘法表可得:a21a42a22a41=-a41a33a11a42a12a41=a42a33;(a11+a22)a33=a11a22a12a21;(a11+a22)a34=0;a31=a32=0;a42a34=a41a34=0.下面分几种情形进行讨论.

1) 当a11+a22=0时,得到a11a22a12a21=0, 如果a11=0,则a22=0,所以,a12a21=0.如果a34≠0,得到a42=a41=0,再由命题1,可得矩阵A1, A2, A3.如果a34=0,得到a12a21=0,a41a42a33=0,分别讨论各种情形可得到矩阵A4, …, A28.如果a11≠0,由命题1,可以徦设a11=1,则a22=-1,a12a21=-1.如果a34≠0,得到a42=a41=0,得到A29.如果a34=0, 得到矩阵A30, A31.

2) 当a11+a22≠0时,则a31=a32=a34=0.如果a11=0,则a22≠0,不妨设a22=1.如果a33=0,得到a12a21=0, a41=a21a42, 得到矩阵A32, A33, A34.如果a33≠0,得到a12a21=a33a41=a42=0, 得到矩阵A35.如果a11≠0,不妨设a11=1, 则a22≠-1,在a33=0的情形下,得到a12a21=a22, 可得到矩阵A36, A37.在a33≠0的情形下,得到a12a21=-a33(1+a22)+a22.如果a12=0,得到a22=0, a42=a41=0,或是a41=-a21a42/a33, a42≠0, a33≠0, 分别得到矩阵A38, A39.如果a12≠0, 得到等价方程:a21a42a22a41=-a41a33; a42a12a41=a42a33; (1+a22)a33=a22a12a21.如果a22=a33,则a41=a42=0,得到矩阵A40.如果a22a33,由上述方程组进行讨论可知a41=a42=0,得到矩阵A41.证毕.

定理2  设L是引理1中的四维李代数L2, 设P:LL是线性变换,PL的权为零的Rota-Baxter算子的充要条件是, P在基x1, x2, x3, x4下的矩阵为下列情形之一:

$ {\mathit{\boldsymbol{A}}_1} = \left( {\begin{array}{*{20}{c}} 0&0&{{a_{13}}}&{{a_{14}}}\\ 1&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&{{a_{33}}}&{{a_{34}}}\\ 0&0&{{a_{43}}}&{{a_{44}}} \end{array}} \right);{\mathit{\boldsymbol{A}}_2} = \left( {\begin{array}{*{20}{c}} 0&0&{{a_{13}}}&{{a_{14}}}\\ 0&0&0&0\\ 0&{{a_{32}}}&{{a_{33}}}&0\\ {{a_{41}}}&{{a_{42}}}&{{a_{43}}}&{{a_{44}}} \end{array}} \right);\\ {\mathit{\boldsymbol{A}}_3} = \left( {\begin{array}{*{20}{c}} 0&0&{{a_{13}}}&{{a_{14}}}\\ 0&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&{{a_{33}}}&0\\ 0&0&{{a_{43}}}&{{a_{44}}} \end{array}} \right),{a_{23}} \ne 0\;aaa\;{a_{24}} \ne 0; $
$ {\mathit{\boldsymbol{A}}_4} = \left( {\begin{array}{*{20}{c}} 0&0&{{a_{13}}}&{{a_{14}}}\\ 0&0&0&0\\ 1&{{a_{32}}}&{{a_{33}}}&{{a_{34}}}\\ {{a_{41}}}&{{a_{42}}}&{{a_{43}}}&{{a_{44}}} \end{array}} \right);{\mathit{\boldsymbol{A}}_5} = \left( {\begin{array}{*{20}{c}} 0&0&{{a_{13}}}&{{a_{14}}}\\ 0&0&0&0\\ 1&0&{{a_{33}}}&{{a_{34}}}\\ {{a_{41}}}&{{a_{42}}}&{{a_{43}}}&{{a_{44}}} \end{array}} \right),{a_{42}} \ne 0,\\ {\mathit{\boldsymbol{A}}_6} = \left( {\begin{array}{*{20}{c}} 0&1&{{a_{13}}}&{{a_{14}}}\\ 0&0&0&0\\ 0&{{a_{32}}}&{{a_{33}}}&{{a_{34}}}\\ 0&{{a_{42}}}&{{a_{43}}}&{{a_{44}}} \end{array}} \right),{a_{32}} \ne 0; $
$ {\mathit{\boldsymbol{A}}_7} = \left( {\begin{array}{*{20}{c}} 0&1&{{a_{13}}}&{{a_{14}}}\\ 0&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&{{a_{33}}}&{{a_{34}}}\\ 0&0&{{a_{43}}}&{{a_{44}}} \end{array}} \right);{\mathit{\boldsymbol{A}}_8} = \left( {\begin{array}{*{20}{c}} 0&1&{{a_{13}}}&{{a_{14}}}\\ 0&0&0&0\\ 0&0&{{a_{33}}}&{{a_{34}}}\\ 0&{{a_{42}}}&{{a_{43}}}&{{a_{44}}} \end{array}} \right),{a_{42}} \ne 0;\\ {\mathit{\boldsymbol{A}}_9} = \left( {\begin{array}{*{20}{c}} 1&{{a_{12}}}&{{a_{13}}}&{{a_{14}}}\\ {1/{a_{12}}}&{ - 1}&{{a_{23}}}&{{a_{24}}}\\ 0&0&{{a_{33}}}&{{a_{34}}}\\ 0&0&{{a_{43}}}&{{a_{44}}} \end{array}} \right),{a_{12}} \ne 0; $
$ {\mathit{\boldsymbol{A}}_{10}} = \left( {\begin{array}{*{20}{c}} 1&{{a_{12}}}&{{a_{13}}}&{{a_{14}}}\\ 0&0&0&0\\ {{a_{31}}}&{{a_{32}}}&{{a_{33}}}&{{a_{34}}}\\ {{a_{41}}}&{{a_{42}}}&{{a_{43}}}&{{a_{44}}} \end{array}} \right). $

证明  由权为零的Rota-Baxter算子的定义及引理1可知,当L是李代数L2时,设P:LL是权为零的Rota-Baxter算子.由等式(1)、(2) 及L1的乘法表得到下列关系同时成立:

$ \left\{ \begin{array}{l} \left( {{a_{11}} + {a_{22}}} \right){a_{22}} = {a_{11}}{a_{22}} - {a_{12}}{a_{21}},\\ \left( {{a_{11}} + {a_{22}}} \right){a_{21}} = 0,\\ \left( {{a_{11}} + {a_{22}}} \right){a_{23}} = 0,\\ \left( {{a_{11}} + {a_{22}}} \right){a_{24}} = 0, \end{array} \right.\;\;\;\left\{ \begin{array}{l} {a_{32}}{a_{22}} = {a_{11}}{a_{32}} - {a_{12}}{a_{31}},\\ {a_{32}}{a_{23}} = 0,\\ {a_{32}}{a_{21}} = 0,\\ {a_{32}}{a_{24}} = 0, \end{array} \right.\;\;\;\\ \left\{ \begin{array}{l} {a_{42}}{a_{22}} = {a_{11}}{a_{42}} - {a_{12}}{a_{41}},\\ {a_{42}}{a_{23}} = 0,\\ {a_{42}}{a_{21}} = 0,\\ {a_{42}}{a_{24}} = 0, \end{array} \right. $
$ \;\;\;\;\;\left\{ \begin{array}{l} - {a_{31}}{a_{22}} = {a_{21}}{a_{32}} - {a_{22}}{a_{31}},\\ - {a_{31}}{a_{21}} = 0,\\ - {a_{31}}{a_{23}} = 0,\\ - {a_{31}}{a_{24}} = 0, \end{array} \right.\;\;\;\;\;\;\left\{ \begin{array}{l} - {a_{41}}{a_{22}} = {a_{21}}{a_{42}} - {a_{22}}{a_{41}},\\ - {a_{21}}{a_{41}} = 0,\\ - {a_{41}}{a_{23}} = 0,\\ - {a_{41}}{a_{24}} = 0, \end{array} \right.\;\;\;\;{a_{31}}{a_{42}} - {a_{32}}{a_{41}} = 0. $

与定理1的证明方法类似,分几种情形进行讨论.

1) a11+a22=0时,得到a11a22a12a21=0.如果a22=0,则a11=0,a12a21=0, a12a31=a32a23=a32a24=0, a12a41=a23a41=a41a24=a42a23=a42a24=a23a31=a31a24=0, 分别讨论各种情况可得到矩阵A1, …, A8.如果a22≠0,由命题1,不妨设a22=1, 则a11=-1.上述讨论可知a12a21=1.再由上面的方程组可得到矩阵A9.

2) 当a11+a22≠0时,a21=a23=a24=0, 得到(a11+a22)a22=a11a22,所以a22=0, 得到矩阵A10.证毕.

定理3  设L是引理1中的四维李代数L3, P:LL是线性变换,PL的权为零的Rota-Baxter算子的充要条件是,P在基x1, x2, x3, x4下的矩阵为下列情形之一:

$ {\mathit{\boldsymbol{A}}_1} = \left( {\begin{array}{*{20}{c}} 0&{{a_{12}}}&{{a_{13}}}&{{a_{14}}}\\ 0&0&1&{{a_{24}}}\\ 0&0&0&0\\ 0&{{a_{42}}}&{{a_{43}}}&{{a_{44}}} \end{array}} \right);{\mathit{\boldsymbol{A}}_2} = \left( {\begin{array}{*{20}{c}} 0&{{a_{12}}}&{{a_{13}}}&{{a_{14}}}\\ 0&0&1&{{a_{24}}}\\ 0&0&0&0\\ {{a_{41}}}&{{a_{42}}}&{ - {a_{42}}}&{{a_{44}}} \end{array}} \right),{a_{41}} \ne 0;\\ {\mathit{\boldsymbol{A}}_3} = \left( {\begin{array}{*{20}{c}} 0&{{a_{12}}}&{ - {a_{12}}}&{{a_{14}}}\\ {{a_{21}}}&0&1&{{a_{24}}}\\ 0&0&0&0\\ 0&{{a_{42}}}&{{a_{43}}}&{{a_{44}}} \end{array}} \right),{a_{21}} \ne 0; $
$ {\mathit{\boldsymbol{A}}_4} = \left( {\begin{array}{*{20}{c}} 0&{{a_{12}}}&{ - {a_{12}}}&{{a_{14}}}\\ {{a_{21}}}&0&1&{{a_{24}}}\\ 0&0&0&0\\ {{a_{41}}}&{{a_{42}}}&{ - {a_{42}}}&{{a_{44}}} \end{array}} \right),{a_{21}} \ne 0,{a_{41}} \ne 0;{\mathit{\boldsymbol{A}}_5} = \left( {\begin{array}{*{20}{c}} 0&{{a_{12}}}&{{a_{13}}}&{{a_{14}}}\\ 0&1&0&{{a_{24}}}\\ 0&0&0&0\\ 0&{{a_{42}}}&{{a_{43}}}&{{a_{44}}} \end{array}} \right);\\ {\mathit{\boldsymbol{A}}_6} = \left( {\begin{array}{*{20}{c}} 0&{{a_{12}}}&{{a_{13}}}&{{a_{14}}}\\ 0&1&0&{{a_{24}}}\\ 0&0&0&0\\ {{a_{41}}}&{{a_{42}}}&{ - {a_{42}}}&{{a_{44}}} \end{array}} \right),{a_{41}} \ne 0; $
$ {\mathit{\boldsymbol{A}}_7} = \left( {\begin{array}{*{20}{c}} 0&{{a_{12}}}&{ - {a_{12}}}&{{a_{14}}}\\ {{a_{21}}}&1&0&{{a_{24}}}\\ 0&0&0&0\\ 0&{{a_{42}}}&{{a_{43}}}&{{a_{44}}} \end{array}} \right),{a_{21}} \ne 0;\\ {\mathit{\boldsymbol{A}}_8} = \left( {\begin{array}{*{20}{c}} 0&{{a_{12}}}&{ - {a_{12}}}&{{a_{14}}}\\ {{a_{21}}}&1&0&{{a_{24}}}\\ 0&0&0&0\\ {{a_{41}}}&{{a_{42}}}&{ - {a_{42}}}&{{a_{44}}} \end{array}} \right),{a_{21}} \ne 0,{a_{41}} \ne 0;{\mathit{\boldsymbol{A}}_9} = \left( {\begin{array}{*{20}{c}} 0&{{a_{12}}}&{{a_{13}}}&{{a_{14}}}\\ 0&1&{{a_{23}}}&{{a_{24}}}\\ 0&0&0&0\\ 0&{{a_{42}}}&{{a_{43}}}&{{a_{44}}} \end{array}} \right), $
$ {a_{23}} \ne 0, - 1;{\mathit{\boldsymbol{A}}_{10}} = \left( {\begin{array}{*{20}{c}} 0&{{a_{12}}}&{ - {a_{12}}}&{{a_{14}}}\\ 0&1&{{a_{23}}}&{{a_{24}}}\\ 0&0&0&0\\ {{a_{41}}}&{{a_{42}}}&{ - {a_{42}}}&{{a_{44}}} \end{array}} \right),{a_{41}} \ne 0,{a_{23}} \ne 0, - 1;\\ {\mathit{\boldsymbol{A}}_{11}} = \left( {\begin{array}{*{20}{c}} 0&{{a_{12}}}&{ - {a_{12}}}&{{a_{14}}}\\ {{a_{21}}}&1&{{a_{23}}}&{{a_{24}}}\\ 0&0&0&0\\ 0&{{a_{42}}}&{{a_{43}}}&{{a_{44}}} \end{array}} \right),{a_{21}} \ne 0,{a_{23}} \ne 0, - 1; $
$ {\mathit{\boldsymbol{A}}_{12}} = \left( {\begin{array}{*{20}{c}} 0&{{a_{12}}}&{ - {a_{12}}}&{{a_{14}}}\\ {{a_{21}}}&1&{{a_{23}}}&{{a_{24}}}\\ 0&0&0&0\\ {{a_{41}}}&{{a_{42}}}&{ - {a_{42}}}&{{a_{44}}} \end{array}} \right),{a_{21}} \ne 0,{a_{41}} \ne 0,{a_{23}} \ne 0, - 1;\\ {\mathit{\boldsymbol{A}}_{13}} = \left( {\begin{array}{*{20}{c}} 1&{{a_{12}}}&{ - {a_{12}}}&{{a_{14}}}\\ 0&0&0&{{a_{24}}}\\ 0&0&0&0\\ 0&{{a_{42}}}&{{a_{43}}}&{{a_{44}}} \end{array}} \right);{\mathit{\boldsymbol{A}}_{14}} = \left( {\begin{array}{*{20}{c}} 1&{{a_{12}}}&{ - {a_{12}}}&{{a_{14}}}\\ 0&0&0&{{a_{24}}}\\ 0&0&0&0\\ {{a_{41}}}&{{a_{42}}}&{ - {a_{42}}}&{{a_{44}}} \end{array}} \right), $
$ {a_{41}} \ne 0;{\mathit{\boldsymbol{A}}_{15}} = \left( {\begin{array}{*{20}{c}} 1&{{a_{12}}}&{ - {a_{12}}}&{{a_{14}}}\\ {{a_{21}}}&0&0&{{a_{24}}}\\ 0&0&0&0\\ 0&{{a_{42}}}&{{a_{43}}}&{{a_{44}}} \end{array}} \right),{a_{21}} \ne 0;\\ {\mathit{\boldsymbol{A}}_{16}} = \left( {\begin{array}{*{20}{c}} 1&{{a_{12}}}&{ - {a_{12}}}&{{a_{14}}}\\ {{a_{21}}}&0&0&{{a_{24}}}\\ 0&0&0&0\\ {{a_{41}}}&{{a_{42}}}&{ - {a_{42}}}&{{a_{44}}} \end{array}} \right),{a_{21}} \ne 0,{a_{41}} \ne 0; $
$ {\mathit{\boldsymbol{A}}_{17}} = \left( {\begin{array}{*{20}{c}} 1&{{a_{12}}}&{{a_{13}}}&{{a_{14}}}\\ {{a_{23}}/\left( {{a_{12}} + {a_{23}}} \right)}&0&{{a_{23}}}&{{a_{24}}}\\ 0&0&0&0\\ {{a_{23}}/\left( {{a_{42}} + {a_{43}}} \right)}&{{a_{42}}}&{{a_{43}}}&{{a_{44}}} \end{array}} \right),{a_{23}} \ne - 1,{a_{12}} \ne - {a_{13}},{a_{42}} \ne - {a_{43}};\\ {\mathit{\boldsymbol{A}}_{18}} = \left( {\begin{array}{*{20}{c}} 1&{{a_{12}}}&{{a_{13}}}&{{a_{14}}}\\ {{a_{22}}/\left( {{a_{12}} + {a_{13}}} \right)}&{{a_{22}}}&0&{{a_{24}}}\\ 0&0&0&0\\ {{a_{22}}/\left( {{a_{42}} + {a_{43}}} \right)}&{{a_{42}}}&{{a_{43}}}&{{a_{44}}} \end{array}} \right), $
$ {a_{22}} \ne - 1,{a_{12}} \ne - {a_{13}},{a_{42}} \ne - {a_{43}}; $
$ {\mathit{\boldsymbol{A}}_{19}} = \left( {\begin{array}{*{20}{c}} 1&{{a_{12}}}&{{a_{13}}}&{{a_{14}}}\\ {\left( {{a_{22}} + {a_{23}}} \right)/\left( {{a_{12}} + {a_{13}}} \right)}&{{a_{22}}}&{{a_{23}}}&{{a_{24}}}\\ 0&0&0&0\\ {\left( {{a_{22}} + {a_{23}}} \right)/\left( {{a_{42}} + {a_{43}}} \right)}&{{a_{42}}}&{{a_{43}}}&{{a_{44}}} \end{array}} \right),\\ {a_{22}} + {a_{23}} \ne - 1,{a_{12}} \ne - {a_{13}},{a_{42}} \ne - {a_{43}};{\mathit{\boldsymbol{A}}_{20}} = \left( {\begin{array}{*{20}{c}} 0&{{a_{12}}}&{{a_{13}}}&{{a_{14}}}\\ 1&{{a_{22}}}&{ - {a_{22}}}&{{a_{24}}}\\ 1&{{a_{32}}}&{ - {a_{32}}}&{{a_{34}}}\\ 0&{{a_{42}}}&{ - {a_{42}}}&{{a_{44}}} \end{array}} \right); $
$ {\mathit{\boldsymbol{A}}_{21}} = \left( {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{{a_{13}}}&{{a_{14}}}\\ 1&{{a_{22}}}&{ - \left( {{a_{11}} + {a_{22}}} \right)}&{{a_{24}}}\\ 1&{{a_{32}}}&{ - \left( {{a_{11}} + {a_{22}}} \right)}&{{a_{34}}}\\ 0&{{a_{42}}}&{ - {a_{42}}}&{{a_{44}}} \end{array}} \right),{a_{11}} \ne 0;\\ {\mathit{\boldsymbol{A}}_{22}} = \left( {\begin{array}{*{20}{c}} 0&{{a_{12}}}&{{a_{13}}}&{{a_{14}}}\\ 0&{{a_{22}}}&{ - {a_{22}}}&{{a_{24}}}\\ 0&1&{ - {a_{32}}}&{{a_{34}}}\\ 0&{{a_{42}}}&{ - {a_{42}}}&{{a_{44}}} \end{array}} \right);{\mathit{\boldsymbol{A}}_{23}} = \left( {\begin{array}{*{20}{c}} 0&{{a_{12}}}&{{a_{13}}}&{{a_{14}}}\\ 0&{{a_{22}}}&{ - {a_{22}}}&{{a_{24}}}\\ 0&0&0&{{a_{34}}}\\ 0&{{a_{42}}}&{{a_{43}}}&{{a_{44}}} \end{array}} \right); $
$ {\mathit{\boldsymbol{A}}_{24}} = \left( {\begin{array}{*{20}{c}} 0&{{a_{12}}}&{ - {a_{12}}}&{{a_{14}}}\\ 0&{{a_{22}}}&{ - {a_{22}}}&{{a_{24}}}\\ 0&0&0&0\\ 1&{{a_{42}}}&{{a_{43}}}&{{a_{44}}} \end{array}} \right);{\mathit{\boldsymbol{A}}_{25}} = \left( {\begin{array}{*{20}{c}} 0&{{a_{12}}}&{ - {a_{12}}}&{{a_{14}}}\\ {{a_{21}}}&{{a_{22}}}&{ - {a_{22}}}&{{a_{24}}}\\ 0&0&0&0\\ 1&{{a_{42}}}&{ - {a_{42}}}&{{a_{44}}} \end{array}} \right),{a_{21}} \ne 0. $

证明  设P:LL是权为零的Rota-Baxter算子,由权为零的Rota-Baxter算子的定义及引理1可知,当L是李代数L3时,由等式(1)、(2) 及L1的乘法表得到下列关于系数的方程组:

$ \left\{ \begin{array}{l} \left( {{a_{11}} + {a_{22}} + {a_{23}}} \right){a_{33}} = {a_{11}}\left( {{a_{22}} + {a_{23}}} \right) - {a_{21}}\left( {{a_{12}} + {a_{13}}} \right),\\ \left( {{a_{11}} + {a_{22}} + {a_{23}}} \right){a_{31}} = 0,\\ \left( {{a_{11}} + {a_{22}} + {a_{23}}} \right){a_{32}} = 0,\\ \left( {{a_{11}} + {a_{22}} + {a_{23}}} \right){a_{34}} = 0, \end{array} \right.\\ \left\{ \begin{array}{l} \left( {{a_{11}} + {a_{32}} + {a_{23}}} \right){a_{33}} = {a_{11}}{a_{32}} - {a_{12}}{a_{31}} + {a_{11}}{a_{33}} - {a_{13}}{a_{31}},\\ \left( {{a_{11}} + {a_{32}} + {a_{23}}} \right){a_{31}} = 0,\\ \left( {{a_{11}} + {a_{32}} + {a_{23}}} \right){a_{32}} = 0,\\ \left( {{a_{11}} + {a_{32}} + {a_{23}}} \right){a_{34}} = 0, \end{array} \right. $
$ \left\{ \begin{array}{l} \left( {{a_{42}} + {a_{43}}} \right){a_{33}} = {a_{11}}{a_{42}} - {a_{12}}{a_{41}} + {a_{11}}{a_{43}} - {a_{13}}{a_{41}},\\ \left( {{a_{42}} + {a_{43}}} \right){a_{31}} = 0,\\ \left( {{a_{42}} + {a_{43}}} \right){a_{32}} = 0,\\ \left( {{a_{42}} + {a_{43}}} \right){a_{34}} = 0, \end{array} \right.\\ \left\{ \begin{array}{l} \left( {{a_{21}} - {a_{31}}} \right){a_{33}} = {a_{21}}{a_{32}} - {a_{22}}{a_{31}} + {a_{21}}{a_{33}} - {a_{23}}{a_{31}},\\ \left( {{a_{21}} - {a_{31}}} \right){a_{31}} = 0,\\ \left( {{a_{21}} - {a_{31}}} \right){a_{32}} = 0,\\ \left( {{a_{21}} - {a_{31}}} \right){a_{34}} = 0, \end{array} \right. $
$ \left\{ \begin{array}{l} - {a_{41}}{a_{33}} = {a_{21}}{a_{42}} - {a_{22}}{a_{41}} + {a_{21}}{a_{43}} - {a_{23}}{a_{41}},\\ - {a_{41}}{a_{31}} = 0,\\ - {a_{41}}{a_{32}} = 0,\\ - {a_{41}}{a_{34}} = 0, \end{array} \right.\\ \left\{ \begin{array}{l} - {a_{41}}{a_{33}} = {a_{31}}{a_{42}} - {a_{32}}{a_{41}} + {a_{31}}{a_{43}} - {a_{33}}{a_{41}},\\ - {a_{41}}{a_{31}} = 0,\\ - {a_{41}}{a_{32}} = 0,\\ - {a_{41}}{a_{34}} = 0. \end{array} \right. $

分几种情形进行讨论.

1) a11+a22+a23≠0时,得到a31=a32=a34=a33=0.且由a11:(a12+a13)=a21:(a22+a23)=a41:(a42+a43), 得到矩阵A1, …, A19.

2) a11+a22+a23=0时,若a11+a32+a33≠0,仍可得矩阵A1, …, A19.如果a11+a32+a33=0,a31≠0,得到a41=0, a21=a31a42+a43=0,且有a11a32a12a31+a11a33a13a31=a11a22a12a21+a11a23a13a21=0.可得矩阵A20, A21.当a31=0时,得到a11=0,所以,a22+a23=0, a32+a33=0.在a32≠0时,由命题1,得到a41=a21=0,a42=-a43, 得到矩阵A22.在a32=0时,得到a33=0, 得到矩阵A23, A24, A25.证毕.

参考文献
[1]
HUMPHREYS J E. Introduction to lie algebras and representation theory[M]. New York: Springer-verlag, 1972. (0)
[2]
MUBARAKZJANOV G M. Classification of solvable lie algebras of sixth order with a non-nilpotent basis element[J]. Izv Vyssh Ucebn Zaved Mat, 1963, 35(4): 104-116. (0)
[3]
PATERA J, ZASSENHAUS H. Solvable lie algebras of dimension ≤ 4 over perfect fields[J]. Linear algebra and its application, 1990, 142(1): 1-17. (0)
[4]
MAKHLOUF A, YAU D. Rota-Baxter Hom-Lie-admissible algebras[J]. Communications in algebra, 2014, 42(3): 1231-1257. DOI:10.1080/00927872.2012.737075 (0)
[5]
范素军, 刘冬艳, 吴艳茹, 等. 李代数的Rota-Baxter算子[J]. 河北师范大学学报(自然科学版), 2014, 38(6): 541-544. (0)
[6]
PEI J, BAI C M, GUO L. Rota-Baxter operators on sl(2, C) and solutions of the classical Yang-Baxter equation[J]. Journal of mathematical physics, 2014, 55(2): 368-378. (0)
[7]
BAI C M. A unified algebraic approach to the classical Yang-baxter equation[J]. Journal of physics a-mathematical and theoretical, 2007, 40(36): 11073-11082. DOI:10.1088/1751-8113/40/36/007 (0)
[8]
DRINFEL'D V G.Quantum groups[C]//Proceedings of the International Congress of Mathematicians.California:Berkeley, 1986. (0)
[9]
GUO L. What is a Rota-Baxter algebra[J]. Notices of the American mathematical society, 2009, 56(11): 1436-1437. (0)
[10]
EBRAHIMI-FARD K, GUO Li. Free Rota-Baxter algebras and rooted trees[J]. Journal of algebra and its applications, 2008, 7(2): 167-194. DOI:10.1142/S0219498808002746 (0)
[11]
EBRAHIMI-FARD K, GUO Li. Rota-Baxter algebras and dendriform algebras[J]. Journal of pure applied algebra, 2008, 212(2): 320-339. DOI:10.1016/j.jpaa.2007.05.025 (0)
[12]
EBRAHIMI-FARD K, GUO Li. Rota-Baxter algebras in renormalization of perturbative quantum field theory[J]. Fields institute communications, 2007, 50: 47-105. (0)