郑州大学学报(理学版)  2017, Vol. 49 Issue (2): 1-6  DOI: 10.13705/j.issn.1671-6841.2016287

引用本文  

杨帅, 张淑琴. Caputo型分数阶微分方程边值问题解的存在唯一性[J]. 郑州大学学报(理学版), 2017, 49(2): 1-6.
YANG Shuai, ZHANG Shuqin. Existence and Uniqueness of Solutions of Boundary Value Problem for a Caputo-type Fractional Differential Equation[J]. Journal of Zhengzhou University(Natural Science Edition), 2017, 49(2): 1-6.

基金项目

国家自然科学基金项目(11371364)

通信作者

作者简介

杨帅(1990—),男,陕西榆林人,博士,主要从事应用数学与力学研究, Email:haotianwuji2@sina.com

文章历史

收稿日期:2016-10-21
Caputo型分数阶微分方程边值问题解的存在唯一性
杨帅1 , 张淑琴2     
1. 中国矿业大学(北京) 力学与建筑工程学院 北京 100083;
2. 中国矿业大学(北京) 理学院 北京 100083
摘要:主要探讨一类Caputo型分数阶微分方程边值问题解的存在唯一性.通过将边值问题转化为等价的Fredholm积分方程,在巴拿赫空间上运用不动点定理,证明了积分方程解的存在性和唯一性.
关键词Caputo型分数阶微分方程    边值问题    Fredholm积分方程    不动点    
Existence and Uniqueness of Solutions of Boundary Value Problem for a Caputo-type Fractional Differential Equation
YANG Shuai1 , ZHANG Shuqin2     
1. School of Mechanics & Civil Engineering, China University of Mining & Technology, Beijing 100083, China;
2. College of Science, China University of Mining & Technology, Beijing 100083, China
Abstract: The existence and uniquness of solutions of boundary value problem for a Caputo-type fractional differential equation were investigated. By transforming the boundary value problem into an equivalent Fredholm integral equation, and employing fixed point theorem in a Banach space, the existence and uniqueness of the solutions of the integral equation was proved.
Key words: Caputo-type fractional differential equation    boundary value problem    Fredholm integral equation    fixed point    
0 引言

分数阶微分方程已经广泛应用于分数物理学、分子动力学、自动控制、电化学等各个科学研究领域[1-3].关于分数阶微分方程的边值问题也一直是分数阶微积分理论的一个重要研究课题,其在模拟工程、物理和生命科学等应用科学领域的许多现象中具有很大的优势,如非线性扩散、气体的燃烧和热交换、布朗运动等问题[4-5].此外,诸多学者都独立地探讨了各类分数阶微分方程初值问题[6-9].

本文主要讨论一类Caputo型分数阶微分方程边值问题:

$ \left\{ \begin{array}{l} ^cD_a^\alpha y\left( x \right) = f\left( {x,y\left( x \right)} \right),x \in \left[ {a,b} \right],1 < \alpha < 2\\ \mathit{\boldsymbol{A}}\left( \begin{array}{l} y\left( a \right)\\ y'\left( a \right) \end{array} \right) + \mathit{\boldsymbol{B}}\left( \begin{array}{l} y\left( b \right)\\ y'\left( b \right) \end{array} \right) = \mathit{\boldsymbol{C}} \end{array} \right. $ (1)

其中:A=$\left( {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}\\ {{a_{21}}}&{{a_{22}}} \end{array}} \right)$; B=$\left( {\begin{array}{*{20}{c}} {{b_{11}}}&{{b_{12}}}\\ {{b_{21}}}&{{b_{22}}} \end{array}} \right)$; C=$\left( {\begin{array}{*{20}{c}} {{c_1}}\\ {{c_2}} \end{array}} \right)$; cDaα是Caputo分数阶导数,核心思想是将其转化为等价的Fredholm积分方程,利用Schauder不动点定理和Banach不动点定理证明其解的存在唯一性.

1 预备知识

首先,我们来介绍几个基本概念和一些Caputo分数阶导数的性质以及相关引理.

定义1[1]   设Ω=[a, b]是R中的有限区间,∀αR+,则连续函数f(x)的α阶Riemann-Liouville分数阶积分定义为

$ I_a^\alpha f\left( x \right) = \frac{1}{{\Gamma \left( \alpha \right)}}\int_a^x {{{\left( {x - t} \right)}^{\alpha - 1}}f\left( t \right){\rm{d}}t,a \le x \le b,} $

右端项在[a, b]上有定义. α=0时,令Ia0=I为恒等算子.

定义2[1]  设Ω=[a, b]是R中的有限区间,∀α≥0,且n=[α]+1,则α阶Riemann-Liouville分数阶导数定义为

$ D_a^\alpha f\left( x \right) = \frac{{{{\rm{d}}^n}}}{{{\rm{d}}{x^n}}}I_a^{n - \alpha }f\left( x \right) = \frac{{{{\rm{d}}^n}}}{{{\rm{d}}{x^n}}}\frac{1}{{\Gamma \left( {n - \alpha } \right)}}\int_a^x {{{\left( {x - t} \right)}^{n - \alpha - 1}}f\left( t \right){\rm{d}}t,a \le x \le b.} $

α$ \notin $N时,n=[α]+1;当αN时,n=α.

定义3[1]  设Ω=[a, b]是R中的有限区间,∀αR+,则连续函数f(x)的α阶Caputo分数阶导数定义为

$ ^cD_a^\alpha f\left( x \right) = D_a^\alpha \left[ {f\left( x \right) - \sum\limits_{k = 0}^{n - 1} {\frac{{{f^{\left( k \right)}}\left( a \right)}}{{k!}}{{\left( {x - a} \right)}^k}} } \right],a \le x \le b, $

α$ \notin $N时,n=[α]+1;当αN时,n=α.

性质1  常数的Caputo分数阶导数为0,即cDaαC=Ian-α0=0.

性质2  设f1, f2是两个连续函数,∀α≥0,且cDaαf1cDaαf2几乎处处存在.设λ1, λ2R,则cDaα(λ1f1+λ2f2)几乎处处存在,且cDaα(λ1f1+λ2f2)=λ1cDaαf1+λ2cDaαf2.

引理1[1]   设α>0,fC[a, b],则有cDaα(Iaαf)=f几乎处处成立.

引理2[1]   设n=[α]+1,fC[a, b],Ian-αf(x)∈Cn[a, b],则有

$ I_a^\alpha D_a^\alpha f\left( x \right) = f\left( x \right) - \sum\limits_{j = 1}^n {\frac{{{D^{n - j}}\left( {I_a^{n - \alpha }f} \right)\left( a \right)}}{{\Gamma \left( {\alpha - j + 1} \right)}}{{\left( {x - a} \right)}^{\alpha - j}}} . $
2 主要结果

定理1  设1<α<2,aijbijciR (i, j=1, 2),f:[a, bRR连续,且矩阵G=A+BET可逆,其中ET=$\left( {\begin{array}{*{20}{c}} 1&{b - a}\\ 0&1 \end{array}} \right)$.则Caputo型分数阶微分方程边值问题(1) 有解yC[a, b], 当且仅当它是Fredholm积分方程

$ y\left( x \right) = {\lambda _1} + {\lambda _2}\left( {x - a} \right) + \frac{1}{{\Gamma \left( \alpha \right)}}\int_a^x {{{\left( {x - t} \right)}^{\alpha - 1}}f\left( {t,y\left( t \right)} \right){\rm{d}}t} $ (2)

的解,即式(1) 与(2) 等价.其中λ1λ2由线性方程

$ \mathit{\boldsymbol{G}}\left( \begin{array}{l} {\lambda _1}\\ {\lambda _2} \end{array} \right) = \mathit{\boldsymbol{C}} - \int_a^b {\mathit{\boldsymbol{B}}\left( \begin{array}{l} \frac{{{{\left( {b - t} \right)}^{\alpha - 1}}}}{{\Gamma \left( \alpha \right)}}\\ \frac{{{{\left( {b - t} \right)}^{\alpha - 2}}}}{{\Gamma \left( {\alpha - 1} \right)}} \end{array} \right)} f\left( {t,y\left( t \right)} \right){\rm{d}}t $

决定.

证明  首先证明必要性.由定义2和3可知

$ ^cD_a^\alpha y\left( x \right) = D_a^\alpha \left[ {y\left( x \right) - \sum\limits_{k = 0}^{n - 1} {\frac{{{y^{\left( k \right)}}\left( a \right)}}{{k!}}{{\left( {x - a} \right)}^k}} } \right] = {D^n}\left( {I_a^{n - \alpha }\left[ {y\left( x \right) - \sum\limits_{k = 0}^{n - 1} {\frac{{{y^{\left( k \right)}}\left( a \right)}}{{k!}}{{\left( {x - a} \right)}^k}} } \right]} \right). $

yC[a, b]是Caputo型分数阶微分方程边值问题(1) 的解,且f(x, y)∈C[a, b], 得cDaαy(x)∈C[a, b],则有Ian-α[y(x)-$\sum\limits_{k = 0}^{n - 1} {\frac{{{y^{\left( k \right)}}\left( a \right)}}{{k!}}} $(x-a)k]∈Cn[a, b].

cDaαy(x)=f(x, y(x))两边作用Iaα,可得IaαcDaαy(x)=Iaαf(x, y).由引理2,得到

$ \begin{array}{l} I_a^\alpha {\;^c}D_a^\alpha y\left( x \right) = I_a^\alpha D_a^\alpha \left[ {y\left( x \right) - \sum\limits_{k = 0}^{n - 1} {\frac{{{y^{\left( k \right)}}\left( a \right)}}{{k!}}{{\left( {x - a} \right)}^k}} } \right] = y\left( x \right) - \sum\limits_{k = 0}^{n - 1} {\frac{{{y^{\left( k \right)}}\left( a \right)}}{{k!}}{{\left( {x - a} \right)}^k}} - \\ \sum\limits_{j = 1}^n {\frac{{{D^{n - j}}\left( {I_a^{n - \alpha }g} \right)\left( a \right)}}{{\Gamma \left( {\alpha - j + 1} \right)}}{{\left( {x - a} \right)}^{\alpha - j}},} \end{array} $

其中: g(x)=y(x)-$\sum\limits_{k = 0}^{n - 1} {\frac{{{y^{\left( k \right)}}\left( a \right)}}{{k!}}} $(x-a)k.此外,有

$ \begin{array}{l} {D^{n - j}}\left( {I_a^{n - \alpha }g} \right)\left( x \right) = {D^{n - j - 1}}D\left( {I_a^{n - \alpha }\left[ {y\left( x \right) - \sum\limits_{k = 0}^{n - 1} {\frac{{{y^{\left( k \right)}}\left( a \right)}}{{k!}}{{\left( {x - a} \right)}^k}} } \right]} \right) = {D^{n - j - 1}}\left( {I_a^{n - \alpha }\left[ {y'\left( x \right) - } \right.} \right.\\ \left. {\left. {\sum\limits_{k = 1}^{n - 1} {\frac{{{y^{\left( k \right)}}\left( a \right)}}{{\Gamma \left( k \right)}}{{\left( {x - a} \right)}^{k - 1}}} } \right]} \right) = I_a^{n - \alpha }\left[ {{y^{\left( {n - j} \right)}}\left( x \right) - \sum\limits_{k = n - j}^{n - 1} {\frac{{{y^{\left( k \right)}}\left( a \right)}}{{\Gamma \left( {k - n + j + 1} \right)}}{{\left( {x - a} \right)}^{k - n + j}}} } \right] = \\ \frac{{{{\left( {x - a} \right)}^{n - \alpha }}}}{{\Gamma \left( {n - \alpha } \right)}}\int_0^1 {{{\left( {1 - s} \right)}^{n - \alpha - 1}}\left[ {{y^{\left( {n - j} \right)}}\left( {a + s\left( {x - a} \right)} \right) - \sum\limits_{k = n - j}^{n - 1} {\frac{{{y^{\left( k \right)}}\left( a \right)}}{{\Gamma \left( {k - n + j + 1} \right)}}{{\left( {s\left( {x - a} \right)} \right)}^{k - n + j}}} } \right]} {\rm{d}}s. \end{array} $

因为n>α,则Dn-j(Ian-αg)(x)∈C[a, b],j=1, …, n,由上式可得Dn-j(Ian-αg)(a)=0,j=1, …, n.

因为1<α<2,n=[α]+1=2,于是有

$ \begin{array}{l} I_a^\alpha {\;^c}D_a^\alpha y\left( x \right) = y\left( x \right) - \sum\limits_{k = 0}^{n - 1} {\frac{{{y^{\left( k \right)}}\left( a \right)}}{{k!}}{{\left( {x - a} \right)}^k}} - \sum\limits_{j = 1}^n {\frac{{{D^{n - j}}\left( {I_a^{n - \alpha }g} \right)\left( a \right)}}{{\Gamma \left( {\alpha - j + 1} \right)}}{{\left( {x - a} \right)}^{\alpha - j}}} = \\ y\left( x \right) - \sum\limits_{k = 0}^{n - 1} {\frac{{{y^{\left( k \right)}}\left( a \right)}}{{k!}}{{\left( {x - a} \right)}^k}} = y\left( x \right) - y\left( a \right) - y'\left( a \right)\left( {x - a} \right), \end{array} $

y(x)=y(a)+y′(a)(x-a)+Iaαf(x, y),y′(x)=y′(a)+Iaα-1f(x, y).进一步可以得到

$ y\left( b \right) = y\left( a \right) + y'\left( a \right)\left( {b - a} \right) + \frac{1}{{\Gamma \left( \alpha \right)}}\int_a^b {{{\left( {b - t} \right)}^{\alpha - 1}}f\left( {t,y\left( t \right)} \right){\rm{d}}t,} $
$ y'\left( b \right) = y'\left( a \right) + \frac{1}{{\Gamma \left( {\alpha - 1} \right)}}\int_a^b {{{\left( {b - t} \right)}^{\alpha - 2}}f\left( {t,y\left( t \right)} \right){\rm{d}}t,} $

代入边值条件A$\left( {\begin{array}{*{20}{c}} {y\left( a \right)}\\ {y'\left( a \right)} \end{array}} \right) + \mathit{\boldsymbol{B}}\left( {\begin{array}{*{20}{c}} {y\left( b \right)}\\ {y'\left( b \right)} \end{array}} \right)$=C,可得

$ \mathit{\boldsymbol{G}}\left( \begin{array}{l} y\left( a \right)\\ y'\left( a \right) \end{array} \right) = \mathit{\boldsymbol{C}} - \int_a^b {\mathit{\boldsymbol{B}}\left( \begin{array}{l} \frac{{{{\left( {b - t} \right)}^{\alpha - 1}}}}{{\Gamma \left( \alpha \right)}}\\ \frac{{{{\left( {b - t} \right)}^{\alpha - 2}}}}{{\Gamma \left( {\alpha - 1} \right)}} \end{array} \right)} f\left( {t,y\left( t \right)} \right){\rm{d}}t. $

由此可知yC[a, b]是Fredholm积分方程(2) 的解.

下面证明充分性. yC[a, b]是Fredholm积分方程(2) 的解,方程(2) 两边作用cDaα,由性质1和2以及引理1, 可得cDaαy(x)=cDaαλ1+cDaα(λ2(x-a))+cDaα(Iaαf(x, y))=f(x, y),且有

$ y\left( a \right) = {\lambda _1},y\left( b \right) = {\lambda _1} + {\lambda _2}\left( {b - a} \right) + \frac{1}{{\Gamma \left( \alpha \right)}}\int_a^b {{{\left( {b - t} \right)}^{\alpha - 1}}f\left( {t,y\left( t \right)} \right){\rm{d}}t,} $
$ y'\left( a \right) = {\lambda _2},y'\left( b \right) = {\lambda _2} + \frac{1}{{\Gamma \left( {\alpha - 1} \right)}}\int_a^b {{{\left( {b - t} \right)}^{\alpha - 2}}f\left( {t,y\left( t \right)} \right){\rm{d}}t.} $

于是可以得到

$ \mathit{\boldsymbol{A}}\left( \begin{array}{l} y\left( a \right)\\ y'\left( a \right) \end{array} \right) + \mathit{\boldsymbol{B}}\left( \begin{array}{l} y\left( b \right)\\ y'b \end{array} \right) = \mathit{\boldsymbol{A}}\left( \begin{array}{l} {\lambda _1}\\ {\lambda _2} \end{array} \right) + \mathit{\boldsymbol{B}}\;{\mathit{\boldsymbol{E}}_T}\left( \begin{array}{l} {\lambda _1}\\ {\lambda _2} \end{array} \right) + \int_a^b {\mathit{\boldsymbol{B}}\left( \begin{array}{l} \frac{{{{\left( {b - t} \right)}^{\alpha - 1}}}}{{\Gamma \left( \alpha \right)}}\\ \frac{{{{\left( {b - t} \right)}^{\alpha - 2}}}}{{\Gamma \left( {\alpha - 1} \right)}} \end{array} \right)} f\left( {t,y\left( t \right)} \right){\rm{d}}t \\= \mathit{\boldsymbol{C}}. $

因此,yC[a, b]是Caputo型分数阶微分方程边值问题(1) 的解.

定理2  在定理1的假设条件下,若f:[a, bRR一致有界,则Caputo型分数阶微分方程边值问题(1) 至少有一个解yC[a, b].

证明  由假设f:[a, bRR一致有界,则存在常数M>0,使得f(x, y)≤M.

另外,由G=A+BET可逆,令G-1C=$\left( {\begin{array}{*{20}{c}} {{e_1}}\\ {{e_2}} \end{array}} \right)$G-1B=$\left( {\begin{array}{*{20}{c}} {{d_1}}&{{d_2}}\\ {{d_3}}&{{d_4}} \end{array}} \right)$,可以得到

$ \left( \begin{array}{l} {\lambda _1}\\ {\lambda _2} \end{array} \right) = {\mathit{\boldsymbol{G}}^{ - 1}}\mathit{\boldsymbol{C}} - \int_a^b {\left( {{\mathit{\boldsymbol{G}}^{ - 1}}\mathit{\boldsymbol{B}}\left( \begin{array}{l} \frac{{{{\left( {b - t} \right)}^{\alpha - 1}}}}{{\Gamma \left( \alpha \right)}}\\ \frac{{{{\left( {b - t} \right)}^{\alpha - 2}}}}{{\Gamma \left( {\alpha - 1} \right)}} \end{array} \right)} \right)} f\left( {t,y\left( t \right)} \right){\rm{d}}t = \\ \left( \begin{array}{l} {e_1}\\ {e_2} \end{array} \right) - \int_a^b {\left( {\begin{array}{*{20}{c}} {{d_1}}&{{d_2}}\\ {{d_3}}&{{d_4}} \end{array}} \right)\left( \begin{array}{l} \frac{{{{\left( {b - t} \right)}^{\alpha - 1}}}}{{\Gamma \left( \alpha \right)}}\\ \frac{{{{\left( {b - t} \right)}^{\alpha - 2}}}}{{\Gamma \left( {\alpha - 1} \right)}} \end{array} \right)} f\left( {t,y\left( t \right)} \right){\rm{d}}t. $

U={yC[a, b]:‖y‖≤R},其中:

$ R = \left| {{e_1}} \right| + \left| {{e_2}} \right|\left( {b - a} \right) + M\left[ {\left( {\left| {{d_1}} \right| + 1} \right)\frac{{{{\left( {b - a} \right)}^\alpha }}}{{\Gamma \left( {\alpha + 1} \right)}} + \left| {{d_2}} \right|\frac{{{{\left( {b - a} \right)}^{\alpha - 1}}}}{{\Gamma \left( \alpha \right)}} + \left| {{d_3}} \right|\frac{{{{\left( {b - a} \right)}^{\alpha + 1}}}}{{\Gamma \left( {\alpha + 1} \right)}} + \left| {{d_4}} \right|\frac{{{{\left( {b - a} \right)}^\alpha }}}{{\Gamma \left( \alpha \right)}}} \right], $

显然UC[a, b]中的有界闭凸子集.

U上定义算子F:Fy(x)=λ1+λ2(x-a)+$\frac{1}{{\Gamma \left( \alpha \right)}}\int_\alpha ^x {} $(x-t)α-1f(t, y(t))dt.显然算子F的不动点就是边值问题(1) 的解.我们分以下几步来证明:

第一步:算子FUU的.

$ \begin{array}{l} \left| {Fy\left( x \right)} \right| = \left| {{\lambda _1} + {\lambda _2}\left( {x - a} \right) + \frac{1}{{\Gamma \left( \alpha \right)}}\int_a^x {{{\left( {x - 1} \right)}^{\alpha - 1}}f\left( {t,y\left( t \right)} \right){\rm{d}}t} } \right| \le \left| {{\lambda _1}} \right| + \left| {{\lambda _2}} \right|\left( {b - a} \right) + \\ \frac{{M{{\left( {b - a} \right)}^\alpha }}}{{\Gamma \left( {\alpha + 1} \right)}} \le M\left[ {\left( {\left| {{d_1}} \right| + 1} \right)\frac{{{{\left( {b - a} \right)}^\alpha }}}{{\Gamma \left( {\alpha + 1} \right)}} + \left| {{d_2}} \right|\frac{{{{\left( {b - a} \right)}^{\alpha - 1}}}}{{\Gamma \left( \alpha \right)}} + \left| {{d_3}} \right|\frac{{{{\left( {b - a} \right)}^{\alpha + 1}}}}{{\Gamma \left( {\alpha + 1} \right)}} + } \right.\\ \left. {\left| {{d_4}} \right|\frac{{{{\left( {b - a} \right)}^\alpha }}}{{\Gamma \left( \alpha \right)}}} \right] + \left| {{e_1}} \right| + \left| {{e_2}} \right|\left( {b - a} \right) = R, \end{array} $

又由算子F的定义以及f的连续性知FyC[a, b],则F:UU.

第二步:算子F是连续的.事实上,设{yn}∈U,且存在yU, 使得yny(n→∞),则对任意的x∈[a, b],有

$ \begin{array}{l} \left| {F{y_n}\left( x \right) - Fy\left( x \right)} \right| \le \int_a^b {\left( {\left| {{d_1}} \right|\;\;\;\;\left| {{d_2}} \right|} \right)} \left( \begin{array}{l} \frac{{{{\left( {b - t} \right)}^{\alpha - 1}}}}{{\Gamma \left( \alpha \right)}}\\ \frac{{{{\left( {b - t} \right)}^{\alpha - 2}}}}{{\Gamma \left( {\alpha - 1} \right)}} \end{array} \right)\left| {f\left( {t,{y_n}\left( t \right)} \right) - f\left( {t,y\left( t \right)} \right)} \right|{\rm{d}}t + \\ \left( {b - a} \right)\int_a^b {\left( {\left| {{d_3}} \right|\;\;\;\;\left| {{d_4}} \right|} \right)} \left( \begin{array}{l} \frac{{{{\left( {b - t} \right)}^{\alpha - 1}}}}{{\Gamma \left( \alpha \right)}}\\ \frac{{{{\left( {b - t} \right)}^{\alpha - 2}}}}{{\Gamma \left( {\alpha - 1} \right)}} \end{array} \right)\left| {f\left( {t,{y_n}\left( t \right)} \right) - f\left( {t,y\left( t \right)} \right)} \right|{\rm{d}}t + \\ \frac{1}{{\Gamma \left( \alpha \right)}}\int_a^x {{{\left( {x - t} \right)}^{\alpha - 1}}} \left| {f\left( {t,{y_n}\left( t \right)} \right) - f\left( {t,y\left( t \right)} \right)} \right|{\rm{d}}t \le \left[ {\left( {\left| {{d_1}} \right| + 1} \right)\frac{{{{\left( {b - a} \right)}^\alpha }}}{{\Gamma \left( {\alpha + 1} \right)}} + \left| {{d_2}} \right|\frac{{{{\left( {b - a} \right)}^{\alpha - 1}}}}{{\Gamma \left( \alpha \right)}} + } \right.\\ \left. {\left| {{d_3}} \right|\frac{{{{\left( {b - a} \right)}^{\alpha + 1}}}}{{\Gamma \left( {\alpha + 1} \right)}} + \left| {{d_4}} \right|\frac{{{{\left( {b - a} \right)}^\alpha }}}{{\Gamma \left( \alpha \right)}}} \right]\left\| {f\left( {t,{y_n}\left( t \right)} \right) - f\left( {t,y\left( t \right)} \right)} \right\|. \end{array} $

因为yny(n→∞),所以由f的连续性知‖f(t, yn(t))-f(t, y(t))‖→0(n→∞),故由‖Fyn(x)-Fy(x)‖→0(n→∞),由此说明算子F是连续的.

第三步:F(U)是一致有界的.由第一步的证明以及U的定义,显然F(U)是一致有界的.

第四步:F(U)是等度连续的.任意的x1, x2∈[a, b],不妨设x1x2,对任意的yU,有

$ \begin{array}{l} \left| {Fy\left( {{x_2}} \right) - Fy\left( {{x_1}} \right)} \right| \le \left| {\frac{1}{{\Gamma \left( \alpha \right)}}\int_a^{{x_1}} {\left[ {{{\left( {{x_2} - t} \right)}^{\alpha - 1}}} - {{{\left( {{x_1} - t} \right)}^{\alpha - 1}}}\right]} } \right.f\left( {t,y\left( t \right)} \right){\rm{d}}t + \\ \left. {\frac{1}{{\Gamma \left( \alpha \right)}}\int_x^{{x_2}} {{{\left( {{x_2} - t} \right)}^{\alpha - 1}}f\left( {t,y\left( t \right)} \right){\rm{d}}t} } \right| + \left( {{x_2} - {x_1}} \right)\left| {{\lambda _2}} \right| \le \\ \frac{M}{{\Gamma \left( {\alpha + 1} \right)}}\left[ {x_2^\alpha - x_1^\alpha + {{\left( {{x_2} - {x_1}} \right)}^\alpha }} \right] + \left( {{x_2} - {x_1}} \right)\left| {{\lambda _2}} \right| \le \\ \left\{ {M\left[ {\left| {{d_3}} \right|\frac{{{{\left( {b - a} \right)}^{\alpha + 1}}}}{{\Gamma \left( {\alpha + 1} \right)}} + \left| {{d_4}} \right|\frac{{{{\left( {b - a} \right)}^\alpha }}}{{\Gamma \left( \alpha \right)}}} \right] + \left| {{e_2}} \right|} \right\}\left( {{x_2} - {x_1}} \right) + \\ \frac{M}{{\Gamma \left( {\alpha + 1} \right)}}\left[ {\alpha {\xi ^{\alpha - 1}}\left( {{x_2} - {x_1}} \right) + {{\left( {{x_2} - {x_1}} \right)}^\alpha }} \right] = \\ \left\{ {M\left[ {\left| {{d_3}} \right|\frac{{{{\left( {b - a} \right)}^{\alpha + 1}}}}{{\Gamma \left( {\alpha + 1} \right)}} + \left| {{d_4}} \right|\frac{{{{\left( {b - a} \right)}^\alpha }}}{{\Gamma \left( \alpha \right)}}} \right] + \left| {{e_2}} \right| + \frac{M}{{\Gamma \left( {\alpha + 1} \right)}}\alpha {\xi ^{\alpha - 1}}} \right\}\left( {{x_2} - {x_1}} \right) + \\ \frac{M}{{\Gamma \left( {\alpha + 1} \right)}}{\left( {{x_2} - {x_1}} \right)^\alpha }, \end{array} $

其中: ξ介于x1, x2之间.则当x1x2时,|Fy(x2)-Fy(x1)|→0.因此F(U)是等度连续的.

由Ascoli-Arzela定理知F(U)是相对紧集,因此F:UU全连续.根据Schauder不动点定理知FU中至少有一个不动点.

综上,我们就证明了Caputo型分数阶微分方程边值问题(1) 至少有一个解yC[a, b].

定理3  在定理1的假设条件下,若f:[a, bRR对于第二个变元满足Lipschitz条件,即存在一个适合的Lipschitz常数L<[(|d1|+1)$\frac{{{{\left( {b - a} \right)}^\alpha }}}{{\Gamma \left( {\alpha + 1} \right)}} + \left| {{d_2}} \right|\frac{{{{\left( {b - a} \right)}^{\alpha - 1}}}}{{\Gamma \left( \alpha \right)}} + \left| {{d_3}} \right|\frac{{{{\left( {b - a} \right)}^{\alpha + 1}}}}{{\Gamma \left( {\alpha + 1} \right)}} + \left| {{d_4}} \right|\frac{{{{\left( {b - a} \right)}^\alpha }}}{{\Gamma \left( \alpha \right)}}$]-1,使得

$ \left| {f\left( {x,{y_1}} \right) - f\left( {x,{y_2}} \right)} \right| \le L\left| {{y_1} - {y_2}} \right|, $

则Caputo型分数阶微分方程边值问题(1) 有唯一的解yC[a, b].

证明  在C[a, b]上定义算子F:C[a, b]→C[a, b],

$ Fy\left( x \right) = {\lambda _1} + {\lambda _2}\left( {x - a} \right) + \frac{1}{{\Gamma \left( \alpha \right)}}\int_a^x {{{\left( {x - t} \right)}^{\alpha - 1}}f} \left( {t,y\left( t \right)} \right){\rm{d}}t. $

在定理1的假设条件下,若|f(x, y1)-f(x, y2)|≤L|y1-y2|,则有

$ \begin{array}{l} \left| {F{y_1}\left( x \right) - F{y_2}\left( x \right)} \right| \le \int_a^b {\left( {\left| {{d_1}} \right|\;\;\;\;\left| {{d_2}} \right|} \right)} \left( \begin{array}{l} \frac{{{{\left( {b - t} \right)}^{\alpha - 1}}}}{{\Gamma \left( \alpha \right)}}\\ \frac{{{{\left( {b - t} \right)}^{\alpha - 2}}}}{{\Gamma \left( {\alpha - 1} \right)}} \end{array} \right)\left| {f\left( {t,{y_1}\left( t \right)} \right) - f\left( {t,{y_2}\left( t \right)} \right)} \right|{\rm{d}}t + \\ \left( {b - a} \right)\int_a^b {\left( {\left| {{d_3}} \right|\;\;\;\;\left| {{d_4}} \right|} \right)} \left( \begin{array}{l} \frac{{{{\left( {b - t} \right)}^{\alpha - 1}}}}{{\Gamma \left( \alpha \right)}}\\ \frac{{{{\left( {b - t} \right)}^{\alpha - 2}}}}{{\Gamma \left( {\alpha - 1} \right)}} \end{array} \right)\left| {f\left( {t,{y_1}\left( t \right)} \right) - f\left( {t,{y_2}\left( t \right)} \right)} \right|{\rm{d}}t + \\ \frac{1}{{\Gamma \left( \alpha \right)}}\int_a^x {{{\left( {x - t} \right)}^{\alpha - 1}}\left| {f\left( {t,{y_1}\left( t \right)} \right) - f\left( {t,{y_2}\left( t \right)} \right)} \right|} {\rm{d}}t \le K\left| {{y_1}\left( x \right) - {y_2}\left( x \right)} \le {{y_1}\left( x \right) - {y_2}\left( x \right)} \right|, \end{array} $

其中: K=L[(|d1|+1)$\frac{{{{\left( {b - a} \right)}^\alpha }}}{{\Gamma \left( {\alpha + 1} \right)}} + \left| {{d_2}} \right|\frac{{{{\left( {b - a} \right)}^{\alpha - 1}}}}{{\Gamma \left( \alpha \right)}} + \left| {{d_3}} \right|\frac{{{{\left( {b - a} \right)}^{\alpha + 1}}}}{{\Gamma \left( {\alpha + 1} \right)}} + \left| {{d_4}} \right|\frac{{{{\left( {b - a} \right)}^\alpha }}}{{\Gamma \left( \alpha \right)}}$]≤1.

则在假设条件下算子F成为压缩算子,根据Banach不动点定理,Caputo型分数阶微分方程边值问题(1) 有唯一的解yC[a, b].

注:以上讨论了1<α<2时,Caputo型分数阶微分方程边值问题(1) 的解的存在唯一性问题,事实上,当n-1<αn时,可以得到与(1) 类似的边值问题,用同样的方法可以讨论其解的存在唯一性.

3 例子

我们考虑如下Caputo型分数阶微分方程边值问题:

$ \left\{ \begin{array}{l} ^cD_0^{\frac{3}{2}}y\left( x \right) = \frac{{2{{\rm{e}}^{ - x}}y}}{{1 + 15{{\rm{e}}^x}\left( {1 + y} \right)}},x \in \left[ {0,1} \right],\\ \left( {\begin{array}{*{20}{c}} 1&2\\ 2&4 \end{array}} \right)\left( \begin{array}{l} y\left( 0 \right)\\ y'\left( 0 \right) \end{array} \right) + \left( {\begin{array}{*{20}{c}} 2&1\\ 0&3 \end{array}} \right)\left( \begin{array}{l} y\left( 1 \right)\\ y'\left( 1 \right) \end{array} \right) = \left( \begin{array}{l} 1\\ 2 \end{array} \right). \end{array} \right. $

通过简单的计算, 我们可以得到

$ \mathit{\boldsymbol{G}} = \mathit{\boldsymbol{A}} + \mathit{\boldsymbol{B}}\;{\mathit{\boldsymbol{E}}_T} = \left( {\begin{array}{*{20}{c}} 3&5\\ 1&7 \end{array}} \right),{\mathit{\boldsymbol{G}}^{ - 1}} = \left( {\begin{array}{*{20}{c}} {\frac{7}{{16}}}&{ - \frac{5}{{16}}}\\ { - \frac{1}{{16}}}&{\frac{3}{{16}}} \end{array}} \right),{\mathit{\boldsymbol{G}}^{ - 1}}\mathit{\boldsymbol{B}} = \left( {\begin{array}{*{20}{c}} {\frac{7}{8}}&{ - \frac{1}{2}}\\ { - \frac{1}{8}}&{\frac{1}{2}} \end{array}} \right). $

另外可以得到|f(x, y)|≤$\frac{1}{8}$y‖,|f(x, y1)-f(x, y2)|≤$\frac{1}{8}$|y1-y2|,即L=$\frac{1}{8}$,则

$ L < {\left[ {\frac{{15}}{8}\frac{1}{{\Gamma \left( {5/2} \right)}} + \frac{1}{2}\frac{1}{{\Gamma \left( {3/2} \right)}} + \frac{1}{8}\frac{1}{{\Gamma \left( {5/2} \right)}} + \frac{1}{2}\frac{1}{{\Gamma \left( {3/2} \right)}}} \right]^{ - 1}} = \frac{{3\sqrt \pi }}{{14}} \approx 0.3798. $

综上,由|f(x, y)|≤$\frac{1}{8}$y‖及定理2可知, 上述Caputo型分数阶微分方程边值问题有解yC[a, b].由L=$\frac{1}{8}$及定理3可以得到上述Caputo型分数阶微分方程边值问题有唯一的解yC[a, b].

参考文献
[1]
KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. Amsterdam: Elsevier, 2006. (0)
[2]
KENNETH S M, BERTRAM R. An introduction to the fractional calculus and fractional differential equations[M]. New York: Wiley, 1993. (0)
[3]
RAY S S. Fractional calculus with applications for nuclear reactor dynamics[M]. Boca Raton: CRC Press, 2015. (0)
[4]
SABATIER J, SABATIER J, ALLGEMEIN H. Advances in fractional calculus[M]. Beijing: Beijing World Publishing Corporation, 2014. (0)
[5]
PODLUBNY I. Fractional differential equations[M]. London: Academic Press, 1999. (0)
[6]
ZHOU Y. Basic theory of fractional differential equations[M]. London: World Scientific, 2014. (0)
[7]
JOHNNY H, RODICA L. Boundary value problems for systems of differential, difference and fractional equations[M]. New York: Elsevier, 2016. (0)
[8]
刘东利, 杨军, 崔更新. 高阶分数阶微分方程边值问题正解的存在性[J]. 郑州大学学报(理学版), 2014, 46(1): 16-20. (0)
[9]
梁秋燕. Banach空间分数阶微分方程边值问题解的存在性[J]. 郑州大学学报(理学版), 2013, 45(3): 37-41. (0)