郑州大学学报(理学版)  2018, Vol. 50 Issue (2): 49-55  DOI: 10.13705/j.issn.1671-6841.2017084

引用本文  

冯树凯, 张贤勇, 冯山. 一元粗糙函数无穷积分及其收敛性质[J]. 郑州大学学报(理学版), 2018, 50(2): 49-55.
FENG Shukai, ZHANG Xianyong, FENG Shan. The Infinite Integral of a Univariate Rough Function and Its Convergence Properties[J]. Journal of Zhengzhou University(Natural Science Edition), 2018, 50(2): 49-55.

基金项目

国家自然科学基金项目(61673285, 61203285);四川省青年科技基金项目(2017JQ0046);四川省教育厅科研项目(15ZB0028, 15ZB0029)

通信作者

张贤勇(1978—),男,四川宜宾人,教授,主要从事粗糙集与粒计算研究,E-mail: xianyongzh@sina.com

作者简介

冯树凯(1992—),男,贵州遵义人,硕士研究生,主要从事粗糙集理论和序列数据挖掘算法研究,E-mail:936322075@qq.com

文章历史

收稿日期:2017-04-19
一元粗糙函数无穷积分及其收敛性质
冯树凯1 , 张贤勇1,2 , 冯山1     
1. 四川师范大学 数学与软件科学学院 四川 成都 610066;
2. 四川师范大学 智能信息与量子信息研究所 四川 成都 610066
摘要:一元粗糙函数积分是粗糙理论的应用基础,采用无限度量来研究一元粗糙函数无穷积分及其收敛性质.将有限度量上的粗糙积分推广到无限度量上,探讨粗糙无穷积分的构造定义;基于无限度量研究粗糙函数无穷积分收敛的充要条件与判别方法;基于无限度量,用无穷积分及其收敛性质推进了一元粗糙函数积分的发展.
关键词无限度量    粗糙函数    无穷积分    收敛性质    
The Infinite Integral of a Univariate Rough Function and Its Convergence Properties
FENG Shukai1 , ZHANG Xianyong1,2 , FENG Shan1     
1. College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, China;
2. Institute of Intelligent Information and Quantum Information, Sichuan Normal University, Chengdu 610066, China
Abstract: The integral of a univariate rough function acts as an application basis, but its current research was confined to finite measures. The integral of a univariate rough function and its convergence properties were researched using infinite measures. The integral of a rough function was expanded from finite measures to infinite measures, and its constructional definition was discussed. Based on infinite measures, the infinite integral convergence of a rough function was investigated to achieve the necessary and sufficient conditions, as well as the discriminated methods. The infinite integral and its convergence properties depended on infinite measures to promote the integral of a univariate rough function.
Key words: infinite measure    rough function    infinite integral    convergence property    
0 引言

粗糙集理论是一种重要的不确定性数学理论,自产生以来得到了极大发展.粗糙集与数学分析相结合的粗糙分析和基于粗糙集知识划分研究实函数的离散分析性质,在理论与应用上都具有积极的意义.文献[1]最先给出粗糙函数积分的初始定义.文献[2]对粗糙积分的初始定义进行改进,并研究粗糙积分相关性质.文献[3]讨论粗糙函数模型、柯西数列、粗糙微积分.文献[4]研究由函数粗糙集生成的粗糙积分及其性质.文献[5]讨论粗糙积分与函数粗糙集的粗糙度之间的关系.文献[6]研究Trieble-Lizorkin空间与Besov空间上的粗糙奇异积分.文献[7]探讨粗糙区域生成与二重粗糙积分.文献[8]研究二重粗糙积分的系统识别应用.文献[9]提出粗糙函数的改进定义,并讨论相关的连续、导数和积分等分析性质.文献[10]在研究粗糙函数的性质基础上,讨论粗糙微分方程的性质与求解.文献[11]形成实数域上的粗糙函数模型,并构建匹配的Galois格.通过整理粗糙函数的阶段成果.文献[12]基于有限度量讨论了一元粗糙积分与二元粗糙积分的性质.

综上相关研究可见,粗糙函数积分为粗糙理论的应用基础,当前研究主要基于有限度量.但是,有限度量具有定义集的限制,只能刻画定义域为有限区间的实函数.而无限度量可以刻画定义域为无穷区间的实函数,具有更深远的应用前景.本文采用无限度量来构建一元粗糙函数无穷积分,并研究其收敛性质,包括收敛的充要条件与判别法则.

1 基于无限度量的一元粗糙函数

粗糙函数的现行研究[9-12]主要在有限集[n]={0, 1, 2, …, n}定义的度量上.这种有限集度量不能刻画定义于无限区间[a, +∞)的实函数.对此, 本节主要建立基于无限度量的粗糙函数.

定义1  映射d:[+∞]={0, 1, 2, …, n, …}→R称为无限度量,若

$ \forall i,j \in \left[ { + \infty } \right],i < j,有\;d\left( i \right) < d\left( j \right). $

定义1确定了无限度量.约定符号:$\forall $ i∈[+∞],设d(i)=xi,记S[+∞]={x0, x1, …, xn, …}.

命题1  无限度量d为[+∞]到S[+∞]的双射.

度量对应于严格单调递增实数列{xi},i=1, …, n, …,即

$ {x_0} < {x_1} < x < {x_2} < \cdots < {x_{n - 1}} < {x_n} < \cdots . $

因此,度量是无限整数集[+∞]到实数列S[+∞]的一一对应,可视为在导出闭区间Rd[+∞]=[x0, +∞)上的一种离散化. $\forall $ xRd[+∞]d的上下度量函数为

$ {d^ * }\left( x \right) = \min \left\{ {i \in \left[ { + \infty } \right]:{x_i} \ge x} \right\},{d_ * }\left( x \right) = \max \left\{ {i \in \left[ { + \infty } \right]:{x_i} \le x} \right\}. $

根据上下度量函数,度量dRd[+∞]上的导出关系Id

$ x{I_d}y\underline{\underline {{\rm{def}}}} \left( {{d_ * }\left( x \right) = {d_ * }\left( y \right)} \right) \wedge \left( {{d^ * }\left( x \right) = {d^ * }\left( y \right)} \right),\forall x,y \in {{\bf{R}}_{d\left[ { + \infty } \right]}}. $

进而,基于不可分辨关系Id的上下界标值确定为:

1) 若xi < x < xi+1,则上界标Id*(x)=d(d*(x))=xi+1,下界标I*d(x)=d(d*(x))=xi.

2) 若x=xi,则上界标Id*(x)=d(d*(x))=xi,下界标I*d(x)=d(d*(x))=xi.

定义2   给定无限度量d:[+∞]→Re:[+∞]→R,实函数fRd[+∞]Re[+∞].设

$ \forall x \in {{\bf{R}}_{d\left[ { + \infty } \right]}},\forall i \in \left[ { + \infty } \right],{d_ * }\left( {{x_i}} \right) = {d^ * }\left( {{x_i}} \right) = i. $

实函数f对于度量de的上、下粗糙函数定义为:

$ {f^ * }\left( i \right) = {e^ * }\left( {f\left( {{x_i}} \right)} \right), $
$ {f_ * }\left( i \right) = {e_ * }\left( {f\left( {{x_i}} \right)} \right). $

定义3   设f:[+∞]→[+∞]为粗糙函数,若存在正整数M$\forall $ i, j∈[+∞],当i, j>M时:

1) 若有|f*(i)-f*(j)| < 1(或|f*(i)-f*(j)|=0),则称f在[+∞]上,当i→+∞时下粗糙收敛,也称f在[+∞]上,当i→+∞时存在下粗糙极限.设f的下粗糙极限为α,记$\mathop {{\rm{lim}}}\limits_{i \to + \infty } {\rm{ }}{f_*}\left( i \right) = \alpha, \alpha \in \left[{ + \infty } \right] $.

2) 若有|f*(i)-f*(j)| < 1(或|f*(i)-f*(j)|=0),则称f在[+∞]上,当i→+∞时上粗糙收敛,也称f在[+∞]上,当i→+∞时存在上粗糙极限.设f的上粗糙极限为β,记$\mathop {{\rm{lim}}}\limits_{i \to + \infty } {\rm{ }}{f^*}\left( i \right) = \beta, \beta \in \left[{ + \infty } \right] $.

3) 若|α-β|≤1,则称粗糙函数f在[+∞]上,当i→+∞时粗糙收敛.

基于无限度量,定义2定义一元粗糙函数,定义3定义相关粗糙极限,接下来可自然定义相关无穷积分.

2 一元粗糙函数无穷积分及其收敛性质

为构建无限粗糙积分,先介绍有限粗糙积分.

定义4[1]   设f:[n]→[m]是有限一元粗糙函数,定义粗糙函数f的粗糙积分为

$ \int_0^i {f\left( j \right)\Delta \left( j \right)} = \sum\limits_0^i {f\left( j \right)\Delta \left( j \right)} , $

其中Δ(j)=(j+1)-j=1.定义4由文献[1]给出,规定粗糙函数积分从0开始.在实际中为符合常规,积分可以在定义集的任何子集上运算,且可以考虑上下粗糙函数,相关构造如下.

定义5  设f:[n]→[m]是一个一元粗糙函数,[k1:k2] $ \subseteq $ [n],0≤k1k2nf在[k1:k2]上的上、下粗糙积分为:

$ \int_{{k_1}}^{{k_2}} {{f^ * }\left( j \right)\Delta \left( j \right)} = \sum\limits_{{k_1}}^{{k_2} - 1} {{f^ * }\left( j \right)\Delta \left( j \right)} , $
$ \int_{{k_1}}^{{k_2}} {{f_ * }\left( j \right)\Delta \left( j \right)} = \sum\limits_{{k_1}}^{{k_2} - 1} {{f_ * }\left( j \right)\Delta \left( j \right)} , $

其中Δ(j)=(j+1)-j=1.

定义5改进了定义4的积分模型,使其积分不必从零开始,从而能够在粗糙函数定义集的任意子集上实施积分运算.

2.1 一元粗糙函数无穷积分的构造定义

本小节构造一元粗糙函数无穷积分并提出基本性质.记:

$ \left[ {{k_1}:{k_2}} \right] = \left\{ {{k_1},{k_1} + 1, \cdots ,{k_2} - 1,{k_2}} \right\},{k_1} \le {k_2}, $
$ \left[ {k: + \infty } \right] = \left\{ {k,k + 1, \cdots } \right\},k \ge 0, $
$ \left[ {{k_1}:{k_2}} \right] \subseteq \left[ n \right],0 \le {k_1} \le {k_2} \le n. $

定义4与定义5只涉及一元粗糙函数在有限度量上的积分.在无限度量上的积分定义如下.

定义6   设f:[+∞]→[+∞]为定义在无限度量上的一元粗糙函数,且在任何有限集合[n]上可积,设极限

$ \mathop {\lim }\limits_{i \to + \infty } \int_0^i {{f^ * }\left( j \right)\Delta \left( j \right)} = {J^ * }, $ (1)
$ \mathop {\lim }\limits_{i \to + \infty } \int_0^i {{f_ * }\left( j \right)\Delta \left( j \right)} = {J_ * }. $ (2)

1) 若极限(1)存在,则称此极限J*为粗糙函数f在[+∞]上的上粗糙无穷反常积分(简称上粗糙无穷积分),记作$ {J^*} = \int_0^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} $,并称$\int_0^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} $收敛.反之,极限(1)不存在,则称$ \int_0^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} $发散.

2) 若极限(2)存在,则称此极限J*为粗糙函数f在[+∞]上的下粗糙无穷反常积分(简称下粗糙无穷积分),记作${J_*} = \int_0^{ + \infty } {{f_*}\left( j \right)\Delta \left( j \right)} $,并称$\int_0^{ + \infty } {{f_*}\left( j \right)\Delta \left( j \right)} $收敛.反之,极限(2)不存在,则称$ \int_0^{ + \infty } {{f_*}\left( j \right)\Delta \left( j \right)} $发散.

3) 若极限(1)、(2)均存在,且J*=J*=J,则称J为粗糙函数f在[+∞]上的粗糙无穷反常积分(简称粗糙无穷积分),记作$ J = \int_0^{ + \infty } {f\left( j \right)\Delta \left( j \right)} $,并称$ \int_0^{ + \infty } {f\left( j \right)\Delta \left( j \right)} $收敛.

如果将粗糙函数在有限集上的积分称为粗糙正常积分,则在无限整数集上的粗糙积分可称为无穷反常积分(简称粗糙无穷积分).定义6提供了粗糙无穷积分的基本定义,下面将作改进:将积分下限起点从0推广到任意的非负常数k.

定义7  设f:[+∞]→[+∞]为定义在无限度量上的一元粗糙函数,k≥0,且在任何有限集合[k:n]上可积,如果存在极限

$ \mathop {\lim }\limits_{i \to + \infty } \int_k^i {{f^ * }\left( j \right)\Delta \left( j \right)} = {J^ * }, $
$ \mathop {\lim }\limits_{i \to + \infty } \int_k^i {{f_ * }\left( j \right)\Delta \left( j \right)} = {J_ * }, $

则称该极限为粗糙函数f在[k:+∞]上的上(下)粗糙无穷反常积分(简称上(下)粗糙无穷积分),记作:

$ {J^ * } = \int_k^{ + \infty } {{f^ * }\left( j \right)\Delta \left( j \right)} , $
$ {J_ * } = \int_k^{ + \infty } {{f_ * }\left( j \right)\Delta \left( j \right)} . $

J*=J*=J,则称J为粗糙函数f在[k:+∞]上的粗糙无穷反常积分(简称粗糙无穷积分),记作$J = \int_k^{ + \infty } {f\left( j \right)\Delta \left( j \right)} $,并称$\int_k^{ + \infty } {f\left( j \right)\Delta \left( j \right)} $收敛.

定义4~7涉及4种粗糙积分,表 1进行了汇总与比较,它们的主要差异在于积分上下限的起始与终止不同.此外,定义4只涉及粗糙函数,而定义5~7涉及上下粗糙函数.对于粗糙无穷积分,定义7将定义6的情形进行了包含扩张与应用拓展.对此,后面的研究将主要集中在定义7的无穷积分,并以上粗糙为主要叙述情形(下粗糙有类似结果).

表 1 四种粗糙积分对比 Table 1 The contrast of the four rough integrals

类似于实函数积分的区间可加性与线性可分性,基于无限度量的粗糙函数积分也具有相关性质.

性质1   f在[+∞]上的上、下粗糙无穷积分分别满足:

$ \int_0^{ + \infty } {{f^ * }\left( j \right)\Delta \left( j \right)} = \int_0^k {{f^ * }\left( j \right)\Delta \left( j \right)} + \int_k^{ + \infty } {{f^ * }\left( j \right)\Delta \left( j \right)} ; $
$ \int_0^{ + \infty } {{f_ * }\left( j \right)\Delta \left( j \right)} = \int_0^k {{f_ * }\left( j \right)\Delta \left( j \right)} + \int_k^{ + \infty } {{f_ * }\left( j \right)\Delta \left( j \right)} . $

证明  这里只证明上粗糙无穷积分情形.由一元粗糙函数积分定义,有

$ \begin{array}{l} \int_0^{ + \infty } {{f^ * }\left( j \right)\Delta \left( j \right)} = \mathop {\lim }\limits_{i \to + \infty } \int_0^i {{f^ * }\left( j \right)\Delta \left( j \right)} = \mathop {\lim }\limits_{i \to + \infty } \sum\limits_0^{i - 1} {{f^ * }\left( j \right)\Delta \left( j \right)} \\= \sum\limits_0^{k - 1} {{f^ * }\left( j \right)\Delta \left( j \right)} + \mathop {\lim }\limits_{\begin{array}{*{20}{c}} {i \to + \infty }\\ {i > k} \end{array}} \sum\limits_k^{k - 1} {{f^ * }\left( j \right)\Delta \left( j \right)} = \\ \int_0^k {{f^ * }\left( j \right)\Delta \left( j \right)} + \int_k^{ + \infty } {{f^ * }\left( j \right)\Delta \left( j \right)} . \end{array} $

性质2  设两个一元粗糙函数f:[+∞]→[+∞],g:[+∞]→[+∞],k1k2为任意常数.若上粗糙无穷积分$\int_0^{ + \infty } {{f^ * }\left( j \right)\Delta \left( j \right)} $$ \int_0^{ + \infty } {{g^ * }\left( j \right)\Delta \left( j \right)} $都收敛,则$\int_0^{ + \infty } {[{k_1}{f^*}\left( j \right) + {k_2}{g^*}\left( j \right)]\Delta \left( j \right)} $也收敛,且

$ \int_0^{ + \infty } {\left[ {{k_1}{f^ * }\left( j \right) + {k_2}{g^ * }\left( j \right)} \right]\Delta \left( j \right)} = {k_1}\int_0^{ + \infty } {{f^ * }\left( j \right)\Delta \left( j \right)} + {k_2}\int_0^{ + \infty } {{g^ * }\left( j \right)\Delta \left( j \right)} . $

证明    $ \int_0^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} $$\int_0^{ + \infty } {{g^*}\left( j \right)\Delta \left( j \right)} $都收敛,有

$ \mathop {\lim }\limits_{i \to + \infty } \int_0^i {{f^ * }\left( j \right)\Delta \left( j \right)} = \int_0^{ + \infty } {{f^ * }\left( j \right)\Delta \left( j \right)} ,\mathop {\lim }\limits_{i \to + \infty } \int_0^i {{g^ * }\left( j \right)\Delta \left( j \right)} = \int_0^{ + \infty } {{g^ * }\left( j \right)\Delta \left( j \right)} , $

$ \begin{array}{l} \int_0^{ + \infty } {\left[ {{k_1}{f^ * }\left( j \right) + {k_2}{g^ * }\left( j \right)} \right]\Delta \left( j \right)} = \mathop {\lim }\limits_{i \to + \infty } \int_0^i {\left[ {{k_1}{f^ * }\left( j \right) + {k_2}{g^ * }\left( j \right)} \right]\Delta \left( j \right)} = \\ \mathop {\lim }\limits_{i \to + \infty } \sum\limits_0^{i - 1} {\left[ {{k_1}{f^ * }\left( j \right) + {k_2}{g^ * }\left( j \right)} \right]\Delta \left( j \right)} = \mathop {\lim }\limits_{i \to + \infty } \left( {\sum\limits_0^{i - 1} {{k_1}{f^ * }\left( j \right)\Delta \left( j \right)} + \sum\limits_0^{i - 1} {{k_2}{g^ * }\left( j \right)\Delta \left( j \right)} } \right) = \\ \mathop {\lim }\limits_{i \to + \infty } \sum\limits_0^{i - 1} {{k_1}{f^ * }\left( j \right)\Delta \left( j \right)} + \mathop {\lim }\limits_{i \to + \infty } \sum\limits_0^{i - 1} {{k_2}{g^ * }\left( j \right)\Delta \left( j \right)} = \\ \mathop {\lim }\limits_{i \to + \infty } {k_1}\int_0^i {{f^ * }\left( j \right)\Delta \left( j \right)} + \mathop {\lim }\limits_{i \to + \infty } {k_2}\int_0^i {{g^ * }\left( j \right)\Delta \left( j \right)} = {k_1}\int_0^{ + \infty } {{f^ * }\left( j \right)\Delta \left( j \right)} + {k_2}\int_0^{ + \infty } {{g^ * }\left( j \right)\Delta \left( j \right)} . \end{array} $
2.2 一元粗糙函数无穷积分的收敛条件

一元粗糙函数无穷积分建立后的核心问题是收敛性质的探讨.本小节先研究收敛条件.

定理1   f在[+∞]与[k:+∞]上的上(下)粗糙无穷积分同敛散,即$\int_0^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} $$\int_k^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} (\int_0^{ + \infty } {{f_*}\left( j \right)\Delta \left( j \right)} 与\int_k^{ + \infty } {{f_*}\left( j \right)\Delta \left( j \right)} ) $同敛散.

证明  只证明上粗糙情形.由性质1有

$ \int_0^{ + \infty } {{f^ * }\left( j \right)\Delta \left( j \right)} = \int_0^k {{f^ * }\left( j \right)\Delta \left( j \right)} + \int_k^{ + \infty } {{f^ * }\left( j \right)\Delta \left( j \right)} , $

$\mathop {{\rm{lim}}}\limits_{i \to + \infty } \int_0^i {{f^*}\left( j \right)\Delta \left( j \right)} = \mathop {{\rm{lim}}}\limits_{i \to + \infty } [\int_0^k {{f^*}\left( j \right)\Delta \left( j \right)} + \int_k^i {{f^*}\left( j \right)\Delta \left( j \right)}] $.

又由于$\int_0^k {{f^*}\left( j \right)\Delta \left( j \right)} $是一个常数,则有

$ \mathop {\lim }\limits_{i \to + \infty } \int_0^i {{f^ * }\left( j \right)\Delta \left( j \right)} = \int_0^k {{f^ * }\left( j \right)\Delta \left( j \right)} + \mathop {\lim }\limits_{\begin{array}{*{20}{c}} {i \to + \infty }\\ {i > k} \end{array}} \int_k^i {{f^ * }\left( j \right)\Delta \left( j \right)} , $

$\int_0^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} 与\int_k^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} $同敛散.

定理1表明,粗糙函数无穷积分的敛散性主要由积分后半段决定.粗糙函数无穷积分的收敛性还具有如下4种充要条件.

定理2  上(下)粗糙无穷积分$ \int_0^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} (\int_0^{ + \infty } {{f_*}\left( j \right)\Delta \left( j \right)} )$收敛的充要条件是:$\exists $ G>0,$ \forall $ u>G,有

$ \int_u^{ + \infty } {{f^ * }\left( j \right)\Delta \left( j \right)} = 0\left( {\int_u^{ + \infty } {{f_ * }\left( j \right)\Delta \left( j \right)} = 0} \right). $

证明   只证明上粗糙情形.由定理1,必要性成立,只证充分性.若$ \int_0^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} $收敛,则

$ \mathop {\lim }\limits_{i \to + \infty } \int_0^i {{f^ * }\left( j \right)\Delta \left( j \right)} = {J^ * } = \int_0^{ + \infty } {{f^ * }\left( j \right)\Delta \left( j \right)} , $

即对$\forall $ ε>0,$\exists $G>0,当$\forall $u>G

$ \left| {{J^ * } - \int_0^u {{f^ * }\left( j \right)\Delta \left( j \right)} } \right| < \varepsilon , $

$\int_u^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} < \varepsilon, $,即$ \int_u^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} = 0$.因此,$\exists $G>0,当u>G,有$\int_u^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} = 0 $ =0.

定理2表明,若粗糙函数f在[+∞]上有无穷积分存在,则$\exists $G>0,使得在[G:+∞]上的无穷积分为0.

定理3   上(下)粗糙无穷积分$\int_0^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} (\int_0^{ + \infty } {{f_*}\left( j \right)\Delta \left( j \right)} ) $收敛的充要条件是

$ \mathop {\lim }\limits_{j \to + \infty } {f^ * }\left( j \right) = 0\left( {\mathop {\lim }\limits_{j \to + \infty } {f_ * }\left( j \right) = 0} \right). $

证明  只证明上粗糙情形.

充分性   若$\int_0^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} $收敛,由定理2,$\exists $G>0,$\forall $ u>G,有$\int_u^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right) = 0} $,即$\sum\limits_u^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right) = 0} $.又因为f*(j)≥0,则当j>G,有f*(j)=0,即$\mathop {{\rm{lim}}}\limits_{j \to + \infty } {f^*}\left( j \right) = 0 $.

必要性   由$\mathop {{\rm{lim}}}\limits_{j \to + \infty } {f^*}\left( j \right) = 0 $,根据定义3,$\exists $G>0,$\forall $ i, j>G,有f*(i)=f*(j)=0.故$\exists $G>0,对$\forall $u>G,有$ \int_u^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} = \sum\limits_u^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right) = 0} $,由定理2,$\int_0^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} $收敛.

定理3建立了在粗糙函数极限与无穷积分收敛之间的联系,进而可以利用粗糙函数的极限理论来判别无穷积分的敛散性.由定理2与3,易得下述定理4.

定理4   上(下)粗糙无穷积分$\int_0^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} (\int_0^{ + \infty } {{f_*}\left( j \right)\Delta \left( j \right)} ) $收敛的充要条件是$\exists $G>0,$\forall $ u1u2>G,有

$ \int_0^{{u_1}} {{f^ * }\left( j \right)\Delta \left( j \right)} - \int_0^{{u_2}} {{f^ * }\left( j \right)\Delta \left( j \right)} = 0,\int_0^{{u_1}} {{f_ * }\left( j \right)\Delta \left( j \right)} - \int_0^{{u_2}} {{f_ * }\left( j \right)\Delta \left( j \right)} = 0. $

最后,提供一个关于有界性的无穷积分收敛条件.

定理5   粗糙无穷积分$\int_0^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} (\int_0^{ + \infty } {{f_*}\left( j \right)\Delta \left( j \right)} ) $收敛的充要条件是

$ {F^ * }\left( n \right) = \int_0^n {{f^ * }\left( j \right)\Delta \left( j \right)} ,{F_ * }\left( n \right) = \int_0^n {{f_ * }\left( j \right)\Delta \left( j \right)} , $

在[+∞]上有界.

证明  只证明上粗糙情形.

充分性  由$\int_0^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} $收敛,则$\exists $G,当k>G,有$ \int_k^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right) = 0} $,即有

$ {F^ * }\left( n \right) = \int_0^n {{f^ * }\left( j \right)\Delta \left( j \right)} \le \int_0^{ + \infty } {{f^ * }\left( j \right)\Delta \left( j \right)} = \int_0^k {{f^ * }\left( j \right)\Delta \left( j \right)} + \int_0^{ + \infty } {{f^ * }\left( j \right)\Delta \left( j \right)} = \int_0^k {{f^ * }\left( j \right)\Delta \left( j \right)} , $

${F^*}\left( n \right) = \int_0^n {{f^*}\left( j \right)\Delta \left( j \right)} $在[+∞]上有界.

必要性  由${F^*}\left( n \right) = \int_0^n {{f^*}\left( j \right)\Delta \left( j \right)} $在[+∞]上有界,则$\exists $G,有k>G$\int_k^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right) = 0}, $,即得$\int_0^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} $收敛.

2.3 一元粗糙函数无穷积分的收敛判别

粗糙函数f是[+∞]上的非负函数,且f在任意集合[n]上可积.由于$\int_0^n {f\left( j \right)\Delta \left( j \right)} $关于上限n是单调递增,故$\int_0^{ + \infty } {f\left( j \right)\Delta \left( j \right)} $收敛的充要条件是$ \int_0^n {f\left( j \right)\Delta \left( j \right)} $在[+∞]上存在上界.

定理6   (比较原则)定义在[+∞]上的两个非负粗糙函数fg在任何有限集[n]上可积,且满足$ {f^*}\left( j \right) \le {g^*}\left( j \right)({f_*}\left( j \right) \le {g_*}\left( j \right)), j \in \left[{ + \infty } \right]$,则

1) 若$\int_0^{ + \infty } {{g^*}\left( j \right)\Delta \left( j \right)} $收敛,则$\int_0^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} $收敛; 若$\int_0^{ + \infty } {{g_*}\left( j \right)\Delta \left( j \right)} $收敛,则$ \int_0^{ + \infty } {{f_*}\left( j \right)\Delta \left( j \right)} $收敛.

2) 若$\int_0^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} $发散,则$\int_0^{ + \infty } {{g^*}\left( j \right)\Delta \left( j \right)} $发散; 若$\int_0^{ + \infty } {{f_*}\left( j \right)\Delta \left( j \right)} $发散,则$ \int_0^{ + \infty } {{g_*}\left( j \right)\Delta \left( j \right)} $发散.

证明  只证明上粗糙情形.

1) 已知${f^*}\left( j \right) \le {g^*}\left( j \right), j \in \left[{ + \infty } \right], $,且有$\int_0^{ + \infty } {{g^*}\left( j \right)\Delta \left( j \right)} $收敛,则

$ {F^ * }\left( n \right) = \int_0^n {{f^ * }\left( j \right)\Delta \left( j \right)} \le \int_0^n {{g^ * }\left( j \right)\Delta \left( j \right)} \le \int_0^{ + \infty } {{g^ * }\left( j \right)\Delta \left( j \right)} , $

即有${F^*}\left( n \right) = \int_0^n {{f^*}\left( j \right)\Delta \left( j \right)} $在[+∞]上有界.由定理5知,$\int_0^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} $收敛.

2) 粗糙函数为非负函数,故${G^*}\left( n \right) = \int_0^n {{g^*}\left( j \right)\Delta \left( j \right)} $为单调递增函数.因为${f^*}\left( j \right) \le {g^*}\left( j \right) $,故有

$ \mathop {\lim }\limits_{n \to + \infty } {G^ * }\left( n \right) \ge \mathop {\lim }\limits_{n \to + \infty } {F^ * }\left( n \right) = \int_0^{ + \infty } {{f^ * }\left( j \right)\Delta \left( j \right)} , $

又因为$\int_0^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} $发散.由定理5,有$\int_0^{ + \infty } {{g^*}\left( j \right)\Delta \left( j \right)} $发散.

比较原则利用已知敛散性的粗糙无穷积分去判别另一个粗糙无穷积分的敛散性,从而建立了两种粗糙无穷积分敛散性的联系.

定理7  若$\int_0^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} $收敛,g*(j)在[+∞]上单调有界,则$\int_0^{ + \infty } {{f^*}\left( j \right)g\left( j \right)\Delta \left( j \right)} $收敛.

证明   已知$\int_0^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} $收敛,g*(j)在[+∞]上单调有界,不妨设$ \int_0^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right) = {J^*}}, $g*(j)≤MM>0,则有$\int_0^{ + \infty } {{f^*}\left( j \right){g^*}\left( j \right)\Delta \left( j \right)} \le \int_0^{ + \infty } {{f^*}\left( j \right)M\Delta \left( j \right) = M} \int_0^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} = M{J^*}, $,即$\int_0^n {{f^*}\left( j \right){g^*}\left( j \right)\Delta \left( j \right)} $在[+∞]上有界.由定理5,有$\int_0^{ + \infty } {{f^*}\left( j \right){g^*}\left( j \right)\Delta \left( j \right)} $收敛.

定理8   若${F^*}\left( n \right) = \int_0^n {{f^*}\left( j \right)\Delta \left( j \right)} $在[+∞]上有界,g*(j)在[+∞]上单调趋于0,则$ \int_0^{ + \infty } {{f^*}\left( j \right){g^*}\left( j \right)\Delta \left( j \right)} $收敛.

证明   已知${F^*}\left( n \right) = \int_0^n {{f^*}\left( j \right)\Delta \left( j \right)} $在[+∞]上有界,由定理5知$\int_0^{ + \infty } {{f^*}\left( j \right)\Delta \left( j \right)} $收敛.又g*(j)在[+∞]上单调趋于0,由定义3可知,g*(j)在[+∞]上有界.根据定理7,有$\int_0^{ + \infty } {{f^*}\left( j \right){g^*}\left( j \right)\Delta \left( j \right)} $收敛.

定理7判别法展现了上粗糙无穷积分与有界粗糙函数之间的关系,而定理8判别法可以看成是定理7判别法的推论.

3 结束语

目前,粗糙函数积分的研究主要在有限度量上,而有限度量由于定义集的局限,只能刻画定义域为有限区间的实函数.本文基于无限度量提出一元粗糙函数无穷积分的概念,并研究了相关的收敛充要条件与敛散判别法,推进了粗糙分析理论的发展,使其与数学分析理论更加一致,并更贴近实际应用.进而,可以基于无限度量深入构造与研究粗糙函数多元无穷积分.

参考文献
[1]
PAWLAK Z. Rough sets, rough functions and rough calculus[J]. Rough fuzzy hybridization: a new trend in and decision making, 1999, 42(5): 99-109. (0)
[2]
WANG Y, WANG J, GUAN Y. The theory and application of rough integration in rough function model[C]// Fourth International Conference on Fuzzy Systems and Knowledge Discovery. Haikou, 2007, 3: 224-228. (0)
[3]
王耘. 粗糙集与粗糙函数模型研究[D]. 济南: 山东大学, 2008. (0)
[4]
YU X Q, XU F S. Rough integrals generated by function rough sets[J]. Chinese quarterly journal of mathematics, 2011, 26(2): 296-299. (0)
[5]
于秀清. 粗积分与函数粗集的粗糙度[J]. 计算机工程与应用, 2010, 46(19): 55-57. DOI:10.3778/j.issn.1002-8331.2010.19.015 (0)
[6]
CHEN Y, DING Y. Rough singular integrals on Triebel-Lizorkin space and Besov space[J]. Journal of mathematical analysis and applications, 2008, 347(2): 493-501. DOI:10.1016/j.jmaa.2008.06.039 (0)
[7]
周杨, 吕昆. 粗区域生成与二重粗积分[J]. 山东大学学报(理学版), 2008, 43(11): 91-96. (0)
[8]
吕昆. 二重粗积分与系统识别[D]. 济南: 山东大学, 2009. (0)
[9]
李道国, 陈喜娥. 粗糙集理论中一元、二元粗糙函数定义的改进及数学分析性质的讨论[J]. 山西大学学报(自然科学版), 2000, 23(4): 318-321. (0)
[10]
刘瑞芹. 粗糙函数与函数粗糙集若干性质研究[D]. 合肥: 安徽大学, 2011. (0)
[11]
郭显娥, 王俊红. 实数域上的粗糙函数及其Galois格构建[J]. 计算机工程, 2010, 36(15): 77-79. DOI:10.3969/j.issn.1000-3428.2010.15.027 (0)
[12]
苗夺谦, 李道国. 粗糙集理论、算法与应用[M]. 北京: 清华大学出版社, 2008. (0)