财富优化与市场均衡是金融数学研究的核心问题之一,文献[1]揭示了如何通过投资组合的有效边界来选择最优组合和如何通过分散投资来降低风险,开创了现代投资分析和金融理论的先河.假设市场中有m个行为人,其效用函数Uk(k=1, …, m)为严格递增,其资源禀赋过程记为{εk(t); 0≤t≤T}, (k=1, …, m),则总资源禀赋ε(t)=
许多学者对类似的优化问题进行了研究.文献[2]讨论了在完备市场的资产连续.文献[3]讨论了资产服从poisson跳扩散时的财富最大化问题.文献[4-8]讨论了市场连续或跳扩散时的风险最小化问题.文献[9-12]讨论了风险资产的方差满足Heston模型下的优化问题,并将跳过程进行了推广.本文研究在完备市场中,股票支付连续红利的条件下,跳过程为计数过程的跳扩散模型时的财富优化问题[13],讨论所建金融市场下的均衡问题.
1 金融市场设市场m=(r(t), ρi(t), μi(t), σi(t), φi(t), Si(t), i=1, 2) 是标准且完备的,无风险资产B(t)和风险资产Si(t)满足微分方程(Ft, 0≤t≤T),{W(t), 0≤t≤T},且
$ {\rm{d}}{\mathit{S}_i}\left( t \right) = {S_i}\left( {{t^ - }} \right)\left( {\left( {{\mathit{\mu }_i}\left( t \right) - {\mathit{\rho }_i}\left( t \right)} \right){\rm{d}}\mathit{t + }{\mathit{\sigma }_i}\left( t \right){\rm{d}}\mathit{W}\left( t \right) + {\varphi _i}\left( t \right){\rm{d}}\mathit{M}\left( t \right),i = 1,2,} \right. $ | (1) |
其中:r(t)为无风险利率;ρi(t)为股票的红利率;μi(t)为预期收益率;σi(t)为股票的波动率;φi(t)为股票价格跳跃高度. {W(t), 0≤t≤T}是定义在完备的概率空间(Ω, F, P)上的标准Brown运动. M(t)=N(t)-
假设 函数λ(t),r(t),μi(t),σi(t),φi(t),ρi(t)都是可测、有界的,且满足:
1) λ(t)>0,r(t)≥0,σi(t)>0,ρi(t)≥0,φi(t)>-1,φi(t)≠0 (i=1, 2);
2) 存在c1∈(0, +∞),使得|σ1(t)φ2(t)-σ2(t)φ1(t)|≥c1, t∈[0, T];
3) 存在c2∈(0, +∞),使得
$ \frac{{\left( {{\mathit{\mu }_2}\left( t \right) - {\mathit{\rho }_2}\left( t \right) - \lambda \left( t \right){\mathit{\varphi }_2}\left( t \right) - r\left( t \right)} \right){\mathit{\sigma }_1}\left( t \right) - \left( {{\mathit{\mu }_1}\left( t \right) - {\mathit{\rho }_1}\left( t \right) - \lambda \left( t \right){\mathit{\varphi }_1}\left( t \right) - r\left( t \right)} \right){\mathit{\sigma }_2}\left( t \right)}}{{\mathit{\lambda }\left( t \right)\left( {{\mathit{\sigma }_2}\left( t \right){\mathit{\varphi }_1}\left( t \right) - {\mathit{\sigma }_1}\left( t \right){\mathit{\varphi }_2}\left( t \right)} \right)}} \ge {c_2},t \in \left[ {0,T} \right]. $ |
由假设知,存在θ1(t), θ2(t)满足μi(t)-λ(t)φi(t)-r(t)-σi(t)θ1(t)+λ(t)φi(t)θ2(t)=0, i=1, 2.得到命题1和命题2.
命题1 设L(t)=exp{-
命题2 令
假设投资者k消费过程为ck(t),投资者建立的策略是一个自融资策略[15],则其财富过程Xkck, πk(t)为Xkck, πk(t)=mk0B(t)+mk1S1(t)+mk2S2(t)+
$ \frac{{X_k^{{c_k},{\pi _k}}\left( t \right)}}{{B\left( t \right)}} = \int_0^t {\frac{{{\varepsilon _k}\left( u \right) - {c_k}\left( u \right)}}{{B\left( t \right)}}} {\rm{d}}\mathit{u + }\int_0^t {\sum\limits_{i = 1}^2 {{{\mathit{\tilde \pi }}_{ki}}} } \left( u \right){\mathit{\sigma }_i}\left( u \right){\rm{d}}{\mathit{W}^*}\left( u \right) + \int_0^t {\sum\limits_{i = 1}^2 {{{\mathit{\tilde \pi }}_{ki}}\left( u \right){\mathit{\varphi }_i}\left( u \right)} } {\rm{d}}{\mathit{M}^*}\left( u \right). $ | (2) |
定理1 存在(
$ X_k^{{{\hat c}_k},{{\hat \pi }_k}}\left( t \right) = \frac{{B\left( t \right)}}{{L\left( t \right)}}\mathit{E}\left[ {\int_t^T {\frac{{L\left( u \right)}}{{B\left( u \right)}}\left( {{{\hat c}_k}\left( u \right) - {\varepsilon _k}\left( u \right)} \right){\rm{d}}\mathit{u}\left| {{F_t}} \right.} } \right]. $ | (3) |
证明 根据效用函数的定义,Uk(·)的导函数Uk′(·)的反函数是存在的,用Ik(·)来表示,则
$ \begin{array}{l} E\int_0^t {{e^{ - \int_0^t {\mathit{\beta }\left( u \right){\rm{d}}u} }}} {U_k}\left( {{c_k}\left( t \right)} \right){\rm{d}}\mathit{t = E}\left[ {\int_0^t {{e^{ - \int_0^t {\mathit{\beta }\left( u \right){\rm{d}}u} }}} \left[ {{U_k}\left( {{c_k}\left( t \right)} \right) - y{{\rm{e}}^{\int_0^t {\mathit{\beta }\left( u \right){\rm{d}}u} }}\frac{{L\left( t \right)}}{{B\left( t \right)}}{c_k}\left( t \right)} \right]{\rm{d}}t} \right] + \\ E\left[ {\int_0^t {y\frac{{L\left( t \right)}}{{B\left( t \right)}}{c_k}\left( t \right){\rm{d}}t} } \right] \le \\ \sup \left\{ {E\left[ {\int_0^t {{e^{ - \int_0^t {\mathit{\beta }\left( u \right){\rm{d}}u} }}} \left[ {{U_k}\left( {{c_k}\left( t \right)} \right) - y{{\rm{e}}^{\int_0^t {\mathit{\beta }\left( u \right){\rm{d}}u} }}\frac{{L\left( t \right)}}{{B\left( t \right)}}{c_k}\left( t \right)} \right]{\rm{d}}\mathit{t}} \right]} \right\} + E\left[ {\int_0^t {y\frac{{L\left( t \right)}}{{B\left( t \right)}}{c_k}\left( t \right){\rm{d}}t} } \right] = \\ E\left[ {\int_0^t {{e^{ - \int_0^t {\mathit{\beta }\left( u \right){\rm{d}}u} }}} {U_k}\left( {{I_k}\left( {y{{\rm{e}}^{\int_0^t {\mathit{\beta }\left( u \right){\rm{d}}u} }}\frac{{L\left( t \right)}}{{B\left( t \right)}}} \right)} \right){\rm{d}}\mathit{t}} \right],y > 0. \end{array} $ |
故ck(t)=Ik
由(2) 式可知
$ {{\hat c}_k}\left( t \right) = {I_k}\left( {{y_k}{{\rm{e}}^{\int_0^t {\mathit{\beta }\left( u \right){\rm{d}}u} }}\frac{{L\left( t \right)}}{{B\left( t \right)}}} \right). $ | (4) |
故
$ E\int_0^t {\frac{{L\left( t \right)}}{{B\left( t \right)}}} {{\hat c}_k}\left( t \right){\rm{d}}\mathit{t = E}\int_0^t {\frac{{L\left( t \right)}}{{B\left( t \right)}}} {\varepsilon _k}\left( t \right){\rm{d}}t. $ | (5) |
由Bayes′s法则,可以得到
$ \left\{ \begin{array}{l} {\mathit{\pi }_{k1}}{\mathit{\sigma }_1} + {\mathit{\pi }_{k2}}{\mathit{\sigma }_2} = \frac{{\theta _1^* + K\left( t \right){\theta _1}}}{{L\left( t \right)}}B\left( t \right),\\ {\mathit{\pi }_{k1}}{\mathit{\varphi }_1} + {\mathit{\pi }_{k2}}{\mathit{\varphi }_2} = \frac{{\theta _2^*{\theta _2} + K\left( t \right)\left( {1 - {\theta _2}} \right)}}{{L\left( t \right){\theta _2}}}B\left( t \right). \end{array} \right. $ | (6) |
由假设条件知方程组(6) 有唯一解πk=(πk1, πk2), (ck, πk)∈Ak,使得
$ \begin{array}{l} \frac{{X_k^{{{\hat c}_k},{{\hat \pi }_k}}\left( t \right)}}{{B\left( t \right)}} - \int_0^t {\frac{{{\varepsilon _k}\left( u \right) - {{\hat c}_k}\left( u \right)}}{{B\left( t \right)}}} {\rm{d}}u = \frac{{K\left( t \right)}}{{L\left( t \right)}} = \frac{1}{{L\left( t \right)}}E\left[ {L\left( T \right)\int_0^t {\frac{{{{\hat c}_k}\left( t \right) - {\varepsilon _k}\left( t \right)}}{{B\left( t \right)}}{\rm{d}}\mathit{t}\left| {{F_t}} \right.} } \right] = \\ {E^*}\left[ {\int_0^t {\frac{{{{\hat c}_k}\left( t \right) - {\varepsilon _k}\left( t \right)}}{{B\left( t \right)}}{\rm{d}}\mathit{t}\left| {{F_t}} \right.} } \right] = {E^*}\left[ {\int_0^T {\frac{{{{\hat c}_k}\left( t \right) - {\varepsilon _k}\left( t \right)}}{{B\left( u \right)}}{\rm{d}}\mathit{u}\left| {{F_t}} \right.} } \right] - \int_0^t {\frac{{{\varepsilon _k}\left( u \right) - {{\hat c}_k}\left( u \right)}}{{B\left( t \right)}}} {\rm{d}}u. \end{array} $ |
由Bayes′s法则,有
定理2 标准的完备的市场m是均衡的充分必要条件是
$ L\left( t \right) = {{\rm{e}}^{^{ - \int_0^t {\mathit{\beta }\left( u \right){\rm{d}}u} }}}B\left( t \right)\mathit{\tau }\left( {\varepsilon \left( t \right),\vec \alpha } \right),0 \le t \le T. $ | (7) |
其中
$ E\int_0^t {{{\rm{e}}^{^{ - \int_\mathit{0}^\mathit{t} {\mathit{\beta }\left( \mathit{u} \right)\mathit{du}} }}}} \mathit{\tau }\left( {\varepsilon \left( t \right),\vec \alpha } \right)\left[ {{I_k}\left( {\frac{1}{{{\mathit{\delta }_k}}}\mathit{\tau }\left( {\mathit{\varepsilon }\left( t \right),\vec \alpha } \right)} \right) - {\varepsilon _k}\left( t \right)} \right]{\rm{d}}\mathit{t = }{\rm{0}}\mathit{,}\left( {k = 1, \cdots ,m} \right). $ | (8) |
此时,投资者k的最优消费过程可表示为
$ {{\hat c}_k}\left( t \right) = {I_k}\left( {\frac{1}{{{\mathit{\delta }_k}}}\mathit{\tau }\left( {\varepsilon \left( t \right),\vec \alpha } \right)} \right),0 \le t \le T. $ | (9) |
证明若市场是均衡的,令δk=
$ {{\hat c}_k}\left( t \right) = {I_k}\left( {\frac{1}{{{\mathit{\delta }_k}}}{{\rm{e}}^{\int_\mathit{0}^\mathit{t} {\mathit{\beta }\left( \mathit{u} \right)\mathit{du}} }}\frac{{L\left( t \right)}}{{B\left( t \right)}}} \right), $ | (10) |
$ E\int_0^t {\frac{{L\left( t \right)}}{{B\left( t \right)}}} \left[ {{I_k}\left( {\frac{1}{{{\mathit{\delta }_k}}}{{\rm{e}}^{\int_\mathit{0}^\mathit{t} {\mathit{\beta }\left( \mathit{u} \right)\mathit{du}} }}\frac{{L\left( t \right)}}{{B\left( t \right)}}} \right) - {\varepsilon _k}\left( t \right)} \right]{\rm{d}}\mathit{t = }{\rm{0}}. $ | (11) |
则由市场均衡的条件,可得
$ \cdots \cdots \cdots \cdots \varepsilon \left( t \right) = \sum\limits_{k = 1}^m {{{\hat c}_k}\left( t \right)} = \sum\limits_{k = 1}^m {{I_k}} \left( {\frac{1}{{{\mathit{\delta }_k}}}{{\rm{e}}^{\int_\mathit{0}^\mathit{t} {\mathit{\beta }\left( \mathit{u} \right)\mathit{du}} }}\frac{{L\left( t \right)}}{{B\left( t \right)}}} \right) = \\ I\left( {{{\rm{e}}^{\int_\mathit{0}^\mathit{t} {\mathit{\beta }\left( \mathit{u} \right)\mathit{du}} }}\frac{{L\left( t \right)}}{{B\left( t \right)}},\mathit{\vec \alpha }} \right),0 \le t \le T. $ | (12) |
由于τ(·,
反之,对于标准的完备的市场m, 若满足式(11) 和(12),则
定理3 定义A={k|k=1, 2, …, m; εk(t)=ck, 0≤t≤T}.设
$ {{\delta }_{k}}\le \frac{\mathit{\tau }\left( \varepsilon \left( t \right),\vec{\alpha } \right)}{U_{k}^{'}\left( {{{\bar{c}}}_{k}} \right)},0\le t\le T. $ | (13) |
定义
$ \delta _k^ * \buildrel \Delta \over = \left\{ \begin{array}{l} \inf \left( {\mathop {\min }\limits_{0 \le t \le T} \frac{{\tau \left( {\varepsilon \left( t \right),\vec \alpha } \right)}}{{{{U'}_k}\left( {{{\bar c}_k}} \right)}}} \right), \cdots \cdots \cdots \cdots \cdots k \in A,\\ {\delta _k},\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;k \notin A. \end{array} \right. $ | (14) |
则f(
$ {I_k}\left( {\frac{1}{{{\delta _k}}}\mathit{\tau }\left( {\varepsilon \left( t \right),\mathit{\vec \alpha }} \right)} \right) = {I_k}\left( {\frac{1}{{\delta _k^*}}\mathit{\tau }\left( {\varepsilon \left( t \right),{{\mathit{\vec \alpha }}^*}} \right)} \right),0 \le t \le T,\left( {k = 1, \cdots ,m} \right). $ | (15) |
证明 由(14) 式及Ik(y)≥ck,可以看出k∈A, 当且仅当Ik(
定理4 优化问题
$ U\left( {c,\mathit{\vec \alpha }} \right) \buildrel \Delta \over = \mathop {\max }\limits_{\begin{array}{*{20}{c}} {{c_1} \ge {{\bar c}_1}, \cdots ,{c_m} \ge {{\bar c}_m}}\\ {{c_{_1}}{\rm{ + }}{c_{_2}}{\rm{ + }} \cdots + {c_m} = c} \end{array}} \sum\limits_{k = 1}^m {{\mathit{\delta }_k}{U_k}\left( {{c_k}\left( t \right)} \right)} $ | (16) |
的解为(9) 式,且U′(c,
证明 依据效用函数的定义, 可得
$ \begin{align} & \sum\limits_{k=1}^{m}{{{\delta }_{k}}{{U}_{k}}}\left( {{c}_{k}} \right)\le \sum\limits_{k=1}^{m}{{{\delta }_{k}}\left[ {{U}_{k}}\left( {{{\hat{c}}}_{k}} \right)+\left( {{c}_{k}}-{{{\hat{c}}}_{k}} \right)U_{k}^{'}\left( {{{\hat{c}}}_{k}} \right) \right]}=\\ &\sum\limits_{k=1}^{m}{{{\delta }_{k}}{{U}_{k}}}\left( {{{\hat{c}}}_{k}} \right)+\sum\limits_{\left\{ k\left| {{{\hat{c}}}_{k}} \right.={{{\bar{c}}}_{k}} \right\}}^{m}{{{\delta }_{k}}U_{k}^{'}}\left( {{{\hat{c}}}_{k}} \right)\left( {{c}_{k}}-{{{\hat{c}}}_{k}} \right)+ \\ & \mathit{\tau }\left( c,\vec{\alpha } \right)\sum\limits_{\left\{ k\left| {{{\hat{c}}}_{k}} \right.>{{{\bar{c}}}_{k}} \right\}}^{m}{\left( {{c}_{k}}-{{{\hat{c}}}_{k}} \right)}\le \sum\limits_{k=1}^{m}{{{\delta }_{k}}{{U}_{k}}}\left( {{{\hat{c}}}_{k}} \right)+\mathit{\tau }\left( c,\vec{\alpha } \right)\sum\limits_{k=1}^{m}{\left( {{c}_{k}}-{{{\hat{c}}}_{k}} \right)}=\sum\limits_{k=1}^{m}{{{\delta }_{k}}{{U}_{k}}}\left( {{{\hat{c}}}_{k}} \right). \\ \end{align} $ |
因此(9) 式是优化问题(16) 的解, 且有
$ U\left( {c,\mathit{\vec \alpha }} \right) = \sum\limits_{k = 1}^m {{\mathit{\delta }_k}{U_k}({I_k}(\frac{1}{{{\mathit{\delta }_k}}}\mathit{\tau }{\rm{(}}c,\mathit{\vec \alpha })))} . $ | (17) |
由(17) 式, 可推导出U′(c,
定理5 标准的完备的市场m=(r(t), ρi(t), μi(t), σi(t), φi(t), Si(t), i=1, 2) 是均衡的充分必要条件是
$ \begin{gathered} r\left( t \right) = \beta \left( t \right) - \frac{1}{{U'\left( {\varepsilon \left( t \right),\vec \alpha } \right)}} \hfill \\ \left[ {U''\left( {\varepsilon \left( t \right),\vec \alpha } \right)\left( {{\mu _\varepsilon }\left( t \right) - {\varphi _\varepsilon }\left( t \right)\lambda \left( t \right)} \right) + } \right.\frac{1}{2}U'''\left( {\varepsilon \left( t \right),\vec \alpha } \right)\sigma _\varepsilon ^2\left( t \right) \hfill \\ \left. { + \left( {U'\left( {\varepsilon \left( {{t^ - }} \right) + {\varphi _\varepsilon }\left( t \right),\vec \alpha } \right) - U'\left( {\varepsilon \left( {{t^ - }} \right),\vec \alpha } \right)} \right)} \right]\lambda \left( t \right), \hfill \\ \end{gathered} $ | (18) |
$ {{\theta }_{1}}\left( t \right)=-\frac{{{U}^{''}}\left( \varepsilon \left( t \right),\vec{\alpha } \right)}{{{U}^{'}}\left( \varepsilon \left( t \right),\vec{\alpha } \right)}{{\mathit{\sigma }}_{\varepsilon }}\left( t \right);{{\theta }_{2}}\left( t \right)=-\frac{-1}{{{U}^{'}}\left( \varepsilon \left( t \right),\vec{\alpha } \right)}\left( {{U}^{'}}\left( \varepsilon \left( {{t}^{-}} \right)+{{\mathit{\varphi }}_{\varepsilon }}\left( t \right),\vec{\alpha } \right)-\\ {{U}^{'}}\left( \varepsilon \left( {{t}^{-}} \right),\vec{\alpha } \right) \right)\lambda \left( t \right). $ | (19) |
证明 由(11) 式可以得到τ(ε(t),
$ \mathit{\tau }\left( {\varepsilon \left( t \right),\vec \alpha } \right) = 1 + \int_0^t {\mathit{\tau }\left( {\varepsilon \left( u \right),\vec \alpha } \right)} \left( {\mathit{\beta }\left( u \right) - r\left( u \right)} \right){\rm{d}}\mathit{u} - \int_0^t {\mathit{\tau }\left( {\varepsilon \left( u \right),\vec \alpha } \right){\theta _1}} \left( u \right){\rm{d}}\mathit{W}\left( u \right) - \\ \int_0^t {\mathit{\tau }\left( {\varepsilon \left( u \right),\vec \alpha } \right){\theta _2}} \left( u \right){\rm{d}}\mathit{M}\left( u \right). $ | (20) |
由定理4知τ(ε(t),
$ \begin{array}{l} \tau \left( {\varepsilon \left( t \right),\vec \alpha } \right) = 1 + \int_0^t {\left[ {U''\left( {\varepsilon \left( u \right),\vec \alpha } \right)\left( {{\mu _\varepsilon }\left( u \right) - {\varphi _\varepsilon }\left( u \right)\lambda \left( u \right)} \right) + \\ \frac{1}{2}U'''\left( {\varepsilon \left( u \right),\vec \alpha } \right)\sigma _\varepsilon ^2\left( u \right)} \right]{\rm{d}}u} + \\ \int_0^t {\left[ {U'\left( {\varepsilon \left( {{u^ - }} \right) + {\varphi _\varepsilon }\left( u \right),\vec \alpha } \right) - U'\left( {\varepsilon \left( {{u^ - }} \right),\vec \alpha } \right)} \right]\lambda \left( u \right){\rm{d}}u} + \\ \int_0^t {U''\left( {\varepsilon \left( u \right),\vec \alpha } \right){\sigma _\varepsilon }\left( u \right){\rm{d}}W\left( u \right) + } \\ \int_0^t {\left[ {U'\left( {\varepsilon \left( {{u^ - }} \right) + {\varphi _\varepsilon }\left( u \right),\vec \alpha } \right) - U'\left( {\varepsilon \left( {{u^ - }} \right),\vec \alpha } \right)} \right]\lambda \left( u \right){\rm{d}}M\left( u \right)} . \end{array} $ | (21) |
比较式(20) 和(21) 可以得到式(18) 和(19).
3 结论在所建立的跳扩散模型下的金融市场m=(r(t), ρi(t), μi(t), σi(t), φi(t), Si(t), i=1, 2) 中,市场的均衡是存在的.根据所得到的结果,只需选取
市场的均衡是存在的且是唯一的.由(7) 式和τ(ε(t),
[1] |
MARKOWITZ H. Portfolio selection[J]. The fournal of finance, 1952, 7(1): 77-91. ( ![]() |
[2] |
ROBERT C. Optimum consumption and portfolio rules in a continuous time model[J]. Journal of tconomics theory, 1970, 3(4): 373-413. ( ![]() |
[3] |
JEANBLANC J M, PONTIER M. Optimal portfolio for a small investor in a market model with discontinuous prices[J]. Applied mathematical and optimization, 1990, 22(1): 287-310. DOI:10.1007/BF01447332 ( ![]() |
[4] |
FOLLMER H, LEUKERT P. Efficient hedging:cost versus shortfall risk[J]. Finance and stochastics, 2000, 4(2): 117-146. DOI:10.1007/s007800050008 ( ![]() |
[5] |
NAKANO Y. Minimization of shortfall risk in a jump-diffusion model[J]. Statistics and probability letters, 2004, 67(1): 87-95. DOI:10.1016/j.spl.2003.11.016 ( ![]() |
[6] |
杨云锋, 金浩. 完备市场下亏空风险的最小化[J]. 经济数学, 2011, 28(4): 30-33. ( ![]() |
[7] |
PHAM H. Dynami Lp-hedging in discrete time under cone constraints[J]. Siam journal on control and optimization, 2000, 38(3): 665-682. DOI:10.1137/S0363012998341095 ( ![]() |
[8] |
王永茂, 王丹, 龙梅, 等. 跳-扩散风险模型下的最优投资和再保策略[J]. 郑州大学学报(理学版), 2015, 47(1): 50-54. ( ![]() |
[9] |
杨鹏. Heston模型下最优投资-消费策略选择[J]. 郑州大学学报(理学版), 2016, 48(1): 17-22. ( ![]() |
[10] |
杨云锋, 金浩. 不完备市场下的财富优化[J]. 江西师范大学学报(自然科学版), 2012, 36(3): 245-248. ( ![]() |
[11] |
杨云锋, 夏小刚, 杨秀妮. 跳跃扩散过程的期权定价模型[J]. 数学的实践与认识, 2010, 40(6): 40-45. ( ![]() |
[12] |
杨云锋, 金浩. 波动率随机时的财富优化模型[J]. 统计与决策, 2014, 404(8): 32-35. ( ![]() |
[13] |
DUFFIE D. Dynamic asset pricing theory[M]. New Jersay: Princeton University Press, 2007.
( ![]() |
[14] |
BACK K. Martingale pricing[J]. Financial economics, 2010, 2(2): 235-250. ( ![]() |
[15] |
RIEGER M O. Optimal financial investments for non-concave utilityfunctions[J]. Economics letters, 2012, 114(3): 239-240. DOI:10.1016/j.econlet.2011.10.029 ( ![]() |