郑州大学学报(理学版)  2017, Vol. 49 Issue (2): 14-18  DOI: 10.13705/j.issn.1671-6841.2016211

引用本文  

郑颖春, 杨云锋. 不确定条件下的均衡市场[J]. 郑州大学学报(理学版), 2017, 49(2): 14-18.
ZHENG Yingchun, YANG Yunfeng. Equilibrium Market under Uncertainty[J]. Journal of Zhengzhou University(Natural Science Edition), 2017, 49(2): 14-18.

基金项目

国家自然科学基金项目(71473194);陕西省教育厅科学研究计划项目(16JK1500);陕西省科技新星计划项目(2013XJXX-40)

通信作者

杨云锋(1978—),男,陕西永寿人,副教授,主要从事金融数学、时间序列研究,E-mail:yangyunfeng_1978@126.com

作者简介

郑颖春(1979—),女,陕西蓝田人,讲师,主要从事最优化理论研究,E-mail:zhychun1979@163.com

文章历史

收稿日期:2016-08-25
不确定条件下的均衡市场
郑颖春 , 杨云锋     
西安科技大学 理学院 陕西 西安 710054
摘要:建立了跳过程为非爆炸性计数过程的跳扩散模型,讨论了完备市场下的财富优化与市场均衡.利用随机分析的方法,构建了唯一的等价鞅测度,证明了存在唯一的优化投资组合及最优消费过程,给出了最优财富过程、最优消费过程和优化投资组合.给出了均衡市场的特性,证明了均衡市场的存在性和唯一性.
关键词跳扩散过程    均衡市场    完备市场    消费过程    财富优化    
Equilibrium Market under Uncertainty
ZHENG Yingchun , YANG Yunfeng     
School of Science, Xi′an University of Science & Technology, Xi′an 710054, China
Abstract: The problem of wealth optimization and equilibrium under complete financial markets was considered based on the jump-diffusion model with nonexplosive counting process. Resorting to stochastic analysis method, the uniqueness of the equivalent martingale measure and the optimal investment portfolio and consumption process was proved. Moreover, the optimal wealth process, the optimal consumption and portfolio process were also supplied. Finally, the existence and uniqueness of equilibrium in the financial market was provided once the characterization of an equilibrium market was given.
Key words: jump-diffusion process    equilibrium market    complete financial market    consumption process    wealth optimization    
0 引言

财富优化与市场均衡是金融数学研究的核心问题之一,文献[1]揭示了如何通过投资组合的有效边界来选择最优组合和如何通过分散投资来降低风险,开创了现代投资分析和金融理论的先河.假设市场中有m个行为人,其效用函数Uk(k=1, …, m)为严格递增,其资源禀赋过程记为{εk(t); 0≤tT}, (k=1, …, m),则总资源禀赋ε(t)=$\sum\limits_{k = 1}^m {} $εk(t), 0≤tT,定义生存消费为ck=inf{cR; Uk(c)>-∞}, (k=1, …, m),则总生存消费为c=$\sum\limits_{k = 1}^m {} $ck.本文讨论$\mathop {\sup }\limits_{\left( {{c_k},{\pi _k}} \right) \in {A_k}} E\int_0^t {{{\rm{e}}^{ - \int_0^t {\beta \left( u \right){\rm{d}}u} }}} $Uk(ck(t))dt的财富优化问题, 其中: Ak是可容许投资组合的集合; ck(t)是消费过程; Uk(x)是效用函数; β(t)为贴现率.

许多学者对类似的优化问题进行了研究.文献[2]讨论了在完备市场的资产连续.文献[3]讨论了资产服从poisson跳扩散时的财富最大化问题.文献[4-8]讨论了市场连续或跳扩散时的风险最小化问题.文献[9-12]讨论了风险资产的方差满足Heston模型下的优化问题,并将跳过程进行了推广.本文研究在完备市场中,股票支付连续红利的条件下,跳过程为计数过程的跳扩散模型时的财富优化问题[13],讨论所建金融市场下的均衡问题.

1 金融市场

设市场m=(r(t), ρi(t), μi(t), σi(t), φi(t), Si(t), i=1, 2) 是标准且完备的,无风险资产B(t)和风险资产Si(t)满足微分方程(Ft, 0≤tT),{W(t), 0≤tT},且

$ {\rm{d}}{\mathit{S}_i}\left( t \right) = {S_i}\left( {{t^ - }} \right)\left( {\left( {{\mathit{\mu }_i}\left( t \right) - {\mathit{\rho }_i}\left( t \right)} \right){\rm{d}}\mathit{t + }{\mathit{\sigma }_i}\left( t \right){\rm{d}}\mathit{W}\left( t \right) + {\varphi _i}\left( t \right){\rm{d}}\mathit{M}\left( t \right),i = 1,2,} \right. $ (1)

其中:r(t)为无风险利率;ρi(t)为股票的红利率;μi(t)为预期收益率;σi(t)为股票的波动率;φi(t)为股票价格跳跃高度. {W(t), 0≤tT}是定义在完备的概率空间(Ω, F, P)上的标准Brown运动. M(t)=N(t)-$\int_0^t {} $λ(s)ds, 0≤tT ({N(t), 0≤tT};是与W(t)相互独立的非爆炸性的计数过程,其强度为λ(t).设总资源禀赋满足ε(t)=ε(0)+$\int_0^t {} $με(u)du+$\int_0^t {} $σε(u)dW(u)+$\int_0^t {} $φε(u)dM(u), 0≤tT.

假设  函数λ(t),r(t),μi(t),σi(t),φi(t),ρi(t)都是可测、有界的,且满足:

1) λ(t)>0,r(t)≥0,σi(t)>0,ρi(t)≥0,φi(t)>-1,φi(t)≠0 (i=1, 2);

2) 存在c1∈(0, +∞),使得|σ1(t)φ2(t)-σ2(t)φ1(t)|≥c1, t∈[0, T];

3) 存在c2∈(0, +∞),使得

$ \frac{{\left( {{\mathit{\mu }_2}\left( t \right) - {\mathit{\rho }_2}\left( t \right) - \lambda \left( t \right){\mathit{\varphi }_2}\left( t \right) - r\left( t \right)} \right){\mathit{\sigma }_1}\left( t \right) - \left( {{\mathit{\mu }_1}\left( t \right) - {\mathit{\rho }_1}\left( t \right) - \lambda \left( t \right){\mathit{\varphi }_1}\left( t \right) - r\left( t \right)} \right){\mathit{\sigma }_2}\left( t \right)}}{{\mathit{\lambda }\left( t \right)\left( {{\mathit{\sigma }_2}\left( t \right){\mathit{\varphi }_1}\left( t \right) - {\mathit{\sigma }_1}\left( t \right){\mathit{\varphi }_2}\left( t \right)} \right)}} \ge {c_2},t \in \left[ {0,T} \right]. $

由假设知,存在θ1(t), θ2(t)满足μi(t)-λ(t)φi(t)-r(t)-σi(t)θ1(t)+λ(t)φi(t)θ2(t)=0, i=1, 2.得到命题1和命题2.

命题1  设L(t)=exp{-$\int_0^t {} $θ1(s)dW(s)-$\frac{1}{2}$$\int_0^t {} $θ12(s)ds}· exp[$\int_0^t {} $log θ2(s)dN(s)+$\int_0^t {} $λ(s)(1-θ2(s))ds],若令$\frac{{{\rm{d}}{P^*}}}{{{\rm{d}}P}}$=L(T),则W*(t)=W(t)+$\int_0^t {} $θ1(s)dsP*下的标准Brown运动,N(t)为P*下强度为λ(t)θ2(t)的计数过程,且M*(t)=N(t)-$\int_0^t {} $λ(s)θ2(s)ds(0≤tT)为P*鞅.

命题2  令${{\tilde S}_i}$(t)=Si(t)/B(t)(i=1, 2),则(1) 式等价于d${{\tilde S}_i}$(t)=${{\tilde S}_i}$(t-)(σi(t)dW*(t)+φi(t)dM*(t))(i=1, 2).且${{\tilde S}_i}$(t)(0≤tT, i=1, 2) 为P*鞅,即P*为风险中性鞅测度[14].

假设投资者k消费过程为ck(t),投资者建立的策略是一个自融资策略[15],则其财富过程Xkck, πk(t)为Xkck, πk(t)=mk0B(t)+mk1S1(t)+mk2S2(t)+$\int_0^t {} $(εk(u)-ck(u))du.若令mk1S1(t)=πk1(t), mk2S2(t)=πk2(t),则Xkck, πk(t)满足微分方程dXkck, πk(t)=r(t)Xkck, πk(t)dt+$\sum\limits_{i = 1}^2 {} $[πki(t)((σi(t)dW*(t)+φi(t)dM*(t))]+εk(t)-ck(t).从而Xkck, πk(t)的贴现价值过程满足

$ \frac{{X_k^{{c_k},{\pi _k}}\left( t \right)}}{{B\left( t \right)}} = \int_0^t {\frac{{{\varepsilon _k}\left( u \right) - {c_k}\left( u \right)}}{{B\left( t \right)}}} {\rm{d}}\mathit{u + }\int_0^t {\sum\limits_{i = 1}^2 {{{\mathit{\tilde \pi }}_{ki}}} } \left( u \right){\mathit{\sigma }_i}\left( u \right){\rm{d}}{\mathit{W}^*}\left( u \right) + \int_0^t {\sum\limits_{i = 1}^2 {{{\mathit{\tilde \pi }}_{ki}}\left( u \right){\mathit{\varphi }_i}\left( u \right)} } {\rm{d}}{\mathit{M}^*}\left( u \right). $ (2)
2 主要结论

定理1  存在(${{\hat c}_k},{{\hat \pi }_k}$)∈Ak,是优化问题$\mathop {\sup }\limits_{\left( {{c_k},{\pi _k}} \right) \in {A_k}} E\int_0^t {{{\rm{e}}^{ - \int_0^t {\beta \left( u \right){\rm{d}}u} }}} $Uk(ck(t))dt的解.投资者k的最优财富过程为

$ X_k^{{{\hat c}_k},{{\hat \pi }_k}}\left( t \right) = \frac{{B\left( t \right)}}{{L\left( t \right)}}\mathit{E}\left[ {\int_t^T {\frac{{L\left( u \right)}}{{B\left( u \right)}}\left( {{{\hat c}_k}\left( u \right) - {\varepsilon _k}\left( u \right)} \right){\rm{d}}\mathit{u}\left| {{F_t}} \right.} } \right]. $ (3)

证明  根据效用函数的定义,Uk(·)的导函数Uk′(·)的反函数是存在的,用Ik(·)来表示,则

$ \begin{array}{l} E\int_0^t {{e^{ - \int_0^t {\mathit{\beta }\left( u \right){\rm{d}}u} }}} {U_k}\left( {{c_k}\left( t \right)} \right){\rm{d}}\mathit{t = E}\left[ {\int_0^t {{e^{ - \int_0^t {\mathit{\beta }\left( u \right){\rm{d}}u} }}} \left[ {{U_k}\left( {{c_k}\left( t \right)} \right) - y{{\rm{e}}^{\int_0^t {\mathit{\beta }\left( u \right){\rm{d}}u} }}\frac{{L\left( t \right)}}{{B\left( t \right)}}{c_k}\left( t \right)} \right]{\rm{d}}t} \right] + \\ E\left[ {\int_0^t {y\frac{{L\left( t \right)}}{{B\left( t \right)}}{c_k}\left( t \right){\rm{d}}t} } \right] \le \\ \sup \left\{ {E\left[ {\int_0^t {{e^{ - \int_0^t {\mathit{\beta }\left( u \right){\rm{d}}u} }}} \left[ {{U_k}\left( {{c_k}\left( t \right)} \right) - y{{\rm{e}}^{\int_0^t {\mathit{\beta }\left( u \right){\rm{d}}u} }}\frac{{L\left( t \right)}}{{B\left( t \right)}}{c_k}\left( t \right)} \right]{\rm{d}}\mathit{t}} \right]} \right\} + E\left[ {\int_0^t {y\frac{{L\left( t \right)}}{{B\left( t \right)}}{c_k}\left( t \right){\rm{d}}t} } \right] = \\ E\left[ {\int_0^t {{e^{ - \int_0^t {\mathit{\beta }\left( u \right){\rm{d}}u} }}} {U_k}\left( {{I_k}\left( {y{{\rm{e}}^{\int_0^t {\mathit{\beta }\left( u \right){\rm{d}}u} }}\frac{{L\left( t \right)}}{{B\left( t \right)}}} \right)} \right){\rm{d}}\mathit{t}} \right],y > 0. \end{array} $

ck(t)=Ik$\left( {y{{\rm{e}}^{\int_0^t {\beta \left( u \right){\rm{d}}u} }}\frac{{L\left( t \right)}}{{B\left( t \right)}}} \right)$.定义函数Yk(y)=$E\int_0^t {\frac{{L\left( t \right)}}{{B\left( t \right)}}{I_k}} \left( {y{{\rm{e}}^{\int_0^t {\beta \left( u \right){\rm{d}}u} }}\frac{{L\left( t \right)}}{{B\left( t \right)}}} \right){\rm{d}}t$.

由(2) 式可知$\frac{{X_k^{{c_k},{\pi _k}}\left( t \right)}}{{B\left( t \right)}} - \int_0^t {\frac{{{\varepsilon _k}\left( u \right) - {c_k}\left( u \right)}}{{B\left( t \right)}}} $du是一个P*上鞅,则有${E^*}\left[ {\int_0^t {\frac{{{c_k}\left( t \right)}}{{B\left( t \right)}}{\rm{d}}t} } \right] \le {E^*}\left[ {\int_0^t {\frac{{{\varepsilon _k}\left( t \right)}}{{B\left( t \right)}}{\rm{d}}t} } \right]$, 取yk=Yk-1($E\int_0^t {\frac{{L\left( t \right)}}{{B\left( t \right)}}} $εk(t)dt),则最优消费过程为

$ {{\hat c}_k}\left( t \right) = {I_k}\left( {{y_k}{{\rm{e}}^{\int_0^t {\mathit{\beta }\left( u \right){\rm{d}}u} }}\frac{{L\left( t \right)}}{{B\left( t \right)}}} \right). $ (4)

$ E\int_0^t {\frac{{L\left( t \right)}}{{B\left( t \right)}}} {{\hat c}_k}\left( t \right){\rm{d}}\mathit{t = E}\int_0^t {\frac{{L\left( t \right)}}{{B\left( t \right)}}} {\varepsilon _k}\left( t \right){\rm{d}}t. $ (5)

由Bayes′s法则,可以得到${E^*}\int_0^t {\frac{{{{\hat c}_k}\left( t \right)}}{{B\left( t \right)}}{\rm{d}}t} = {E^*}\int_0^t {\frac{{{\varepsilon _k}\left( t \right)}}{{B\left( t \right)}}{\rm{d}}t} $.令K(t)=E[L(T)$\int_0^t {\frac{{{{\hat c}_k}\left( t \right) - {\varepsilon _k}\left( t \right)}}{{B\left( t \right)}}} $dt|Ft].则K(t)是一个P鞅.根据鞅表示定理, 存在可测的过程θ1*(t), θ2*(t),使得K(t)=$\int_0^t {} $θ1*(s)dW(s)+$\int_0^t {} $θ2*(s)dM(s).由Ito′s引理,${\rm{d}}\left[ {\frac{{K\left( t \right)}}{{L\left( t \right)}}} \right] = \frac{{\theta _1^* + K\left( t \right){\theta _1}}}{{L\left( t \right)}}{\rm{d}}{W^*} + \frac{{\theta _2^*{\theta _2} + K\left( t \right)\left( {1 - {\theta _2}} \right)}}{{L\left( t \right){\theta _2}}}{\rm{d}}{M^*}$, 令

$ \left\{ \begin{array}{l} {\mathit{\pi }_{k1}}{\mathit{\sigma }_1} + {\mathit{\pi }_{k2}}{\mathit{\sigma }_2} = \frac{{\theta _1^* + K\left( t \right){\theta _1}}}{{L\left( t \right)}}B\left( t \right),\\ {\mathit{\pi }_{k1}}{\mathit{\varphi }_1} + {\mathit{\pi }_{k2}}{\mathit{\varphi }_2} = \frac{{\theta _2^*{\theta _2} + K\left( t \right)\left( {1 - {\theta _2}} \right)}}{{L\left( t \right){\theta _2}}}B\left( t \right). \end{array} \right. $ (6)

由假设条件知方程组(6) 有唯一解πk=(πk1, πk2), (ck, πk)∈Ak,使得

$ \begin{array}{l} \frac{{X_k^{{{\hat c}_k},{{\hat \pi }_k}}\left( t \right)}}{{B\left( t \right)}} - \int_0^t {\frac{{{\varepsilon _k}\left( u \right) - {{\hat c}_k}\left( u \right)}}{{B\left( t \right)}}} {\rm{d}}u = \frac{{K\left( t \right)}}{{L\left( t \right)}} = \frac{1}{{L\left( t \right)}}E\left[ {L\left( T \right)\int_0^t {\frac{{{{\hat c}_k}\left( t \right) - {\varepsilon _k}\left( t \right)}}{{B\left( t \right)}}{\rm{d}}\mathit{t}\left| {{F_t}} \right.} } \right] = \\ {E^*}\left[ {\int_0^t {\frac{{{{\hat c}_k}\left( t \right) - {\varepsilon _k}\left( t \right)}}{{B\left( t \right)}}{\rm{d}}\mathit{t}\left| {{F_t}} \right.} } \right] = {E^*}\left[ {\int_0^T {\frac{{{{\hat c}_k}\left( t \right) - {\varepsilon _k}\left( t \right)}}{{B\left( u \right)}}{\rm{d}}\mathit{u}\left| {{F_t}} \right.} } \right] - \int_0^t {\frac{{{\varepsilon _k}\left( u \right) - {{\hat c}_k}\left( u \right)}}{{B\left( t \right)}}} {\rm{d}}u. \end{array} $

由Bayes′s法则,有$\frac{{X_k^{{{\hat c}_k},{{\hat \pi }_k}}\left( t \right)L\left( t \right)}}{{B\left( t \right)}} = L\left( t \right){E^*}\left[ {\int_t^T {\frac{{{{\hat c}_k}\left( u \right) - {\varepsilon _k}\left( u \right)}}{{B\left( u \right)}}{\rm{d}}u\left| {{F_t}} \right.} } \right] = E\left[ {\int_t^T {\frac{{L\left( u \right)\left( {{{\hat c}_k}\left( u \right) - {\varepsilon _k}\left( u \right)} \right)}}{{B\left( u \right)}}{\rm{d}}u\left| {{F_t}} \right.} } \right]$.即(3) 式为最优财富过程.定义两个函数f$\left( {\vec \alpha } \right) \buildrel \Delta \over = \mathop {\max }\limits_{\left\{ {k\left| {{\delta _k} > 0} \right.} \right\}} $(δkUk′(ck)), ${\vec \alpha }$=(δ1, δ2, …, δm),I(y, ${\vec \alpha }$)$ \buildrel \Delta \over = \sum\limits_{k = 1}^m {{I_k}} \left( {\frac{y}{{{\delta _k}}}} \right)$, 0≤y≤∞.易知I(·, ${\vec \alpha }$)存在反函数,用τ(·, ${\vec \alpha }$)来表示.

定理2   标准的完备的市场m是均衡的充分必要条件是

$ L\left( t \right) = {{\rm{e}}^{^{ - \int_0^t {\mathit{\beta }\left( u \right){\rm{d}}u} }}}B\left( t \right)\mathit{\tau }\left( {\varepsilon \left( t \right),\vec \alpha } \right),0 \le t \le T. $ (7)

其中${\vec \alpha }$满足

$ E\int_0^t {{{\rm{e}}^{^{ - \int_\mathit{0}^\mathit{t} {\mathit{\beta }\left( \mathit{u} \right)\mathit{du}} }}}} \mathit{\tau }\left( {\varepsilon \left( t \right),\vec \alpha } \right)\left[ {{I_k}\left( {\frac{1}{{{\mathit{\delta }_k}}}\mathit{\tau }\left( {\mathit{\varepsilon }\left( t \right),\vec \alpha } \right)} \right) - {\varepsilon _k}\left( t \right)} \right]{\rm{d}}\mathit{t = }{\rm{0}}\mathit{,}\left( {k = 1, \cdots ,m} \right). $ (8)

此时,投资者k的最优消费过程可表示为

$ {{\hat c}_k}\left( t \right) = {I_k}\left( {\frac{1}{{{\mathit{\delta }_k}}}\mathit{\tau }\left( {\varepsilon \left( t \right),\vec \alpha } \right)} \right),0 \le t \le T. $ (9)

证明若市场是均衡的,令δk=$\frac{1}{{{y_k}}}$,式(4) 和(5) 等价于

$ {{\hat c}_k}\left( t \right) = {I_k}\left( {\frac{1}{{{\mathit{\delta }_k}}}{{\rm{e}}^{\int_\mathit{0}^\mathit{t} {\mathit{\beta }\left( \mathit{u} \right)\mathit{du}} }}\frac{{L\left( t \right)}}{{B\left( t \right)}}} \right), $ (10)
$ E\int_0^t {\frac{{L\left( t \right)}}{{B\left( t \right)}}} \left[ {{I_k}\left( {\frac{1}{{{\mathit{\delta }_k}}}{{\rm{e}}^{\int_\mathit{0}^\mathit{t} {\mathit{\beta }\left( \mathit{u} \right)\mathit{du}} }}\frac{{L\left( t \right)}}{{B\left( t \right)}}} \right) - {\varepsilon _k}\left( t \right)} \right]{\rm{d}}\mathit{t = }{\rm{0}}. $ (11)

则由市场均衡的条件,可得

$ \cdots \cdots \cdots \cdots \varepsilon \left( t \right) = \sum\limits_{k = 1}^m {{{\hat c}_k}\left( t \right)} = \sum\limits_{k = 1}^m {{I_k}} \left( {\frac{1}{{{\mathit{\delta }_k}}}{{\rm{e}}^{\int_\mathit{0}^\mathit{t} {\mathit{\beta }\left( \mathit{u} \right)\mathit{du}} }}\frac{{L\left( t \right)}}{{B\left( t \right)}}} \right) = \\ I\left( {{{\rm{e}}^{\int_\mathit{0}^\mathit{t} {\mathit{\beta }\left( \mathit{u} \right)\mathit{du}} }}\frac{{L\left( t \right)}}{{B\left( t \right)}},\mathit{\vec \alpha }} \right),0 \le t \le T. $ (12)

由于τ(·, ${\vec \alpha }$)表示I(·, ${\vec \alpha }$)的反函数,则(12) 式可以推导出(7) 式.将(7) 式代入式(10) 和(11),可得式(8) 和(9).

反之,对于标准的完备的市场m, 若满足式(11) 和(12),则${{{\hat c}_k}}$(t)=Ik($\frac{1}{{{\delta _k}}}$τ(ε(t), ${\vec \alpha }$))=Ik($\left( {\frac{1}{{{\delta _k}}}{{\rm{e}}^{\int_0^t {\beta \left( u \right){\rm{d}}u} }} \cdot \frac{{L\left( t \right)}}{{B\left( t \right)}}} \right)$.从而有$\sum\limits_{k = 1}^m {{{\hat c}_k}} \left( t \right) = \sum\limits_{k = 1}^m {{I_k}} \left( {\frac{1}{{{\delta _k}}}{{\rm{e}}^{\int_0^t {\beta \left( u \right){\rm{d}}u} }}\frac{{L\left( t \right)}}{{B\left( t \right)}}} \right) = \varepsilon \left( t \right)$,则市场m是均衡的.

定理3  定义A={k|k=1, 2, …, m; εk(t)=ck, 0≤tT}.设${\vec \alpha }$满足(8) 式,则kA当且仅当

$ {{\delta }_{k}}\le \frac{\mathit{\tau }\left( \varepsilon \left( t \right),\vec{\alpha } \right)}{U_{k}^{'}\left( {{{\bar{c}}}_{k}} \right)},0\le t\le T. $ (13)

定义 ${{\vec \alpha }^*}$=(δ*, δ2*, …, δm*)满足

$ \delta _k^ * \buildrel \Delta \over = \left\{ \begin{array}{l} \inf \left( {\mathop {\min }\limits_{0 \le t \le T} \frac{{\tau \left( {\varepsilon \left( t \right),\vec \alpha } \right)}}{{{{U'}_k}\left( {{{\bar c}_k}} \right)}}} \right), \cdots \cdots \cdots \cdots \cdots k \in A,\\ {\delta _k},\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;k \notin A. \end{array} \right. $ (14)

f(${\vec \alpha }$=f(${{\vec \alpha }^*}$),τ(ε(t), ${\vec \alpha }$)=τ(ε(t), ${{\vec \alpha }^*}$),

$ {I_k}\left( {\frac{1}{{{\delta _k}}}\mathit{\tau }\left( {\varepsilon \left( t \right),\mathit{\vec \alpha }} \right)} \right) = {I_k}\left( {\frac{1}{{\delta _k^*}}\mathit{\tau }\left( {\varepsilon \left( t \right),{{\mathit{\vec \alpha }}^*}} \right)} \right),0 \le t \le T,\left( {k = 1, \cdots ,m} \right). $ (15)

证明  由(14) 式及Ik(y)≥ck,可以看出kA, 当且仅当Ik($\frac{1}{{{\delta _k}}}$τ(ε(t), ${\vec \alpha }$))≥ck,此不等式等价于(13) 式.由(14) 式可知,δkUk′(ck)≤δk*Uk′(ck)≤τ(ε(t), ${\vec \alpha }$)≤f(${\vec \alpha }$),则f(${\vec \alpha }$)=f(${\vec \alpha }$*).又δk*Uk′(ck)≤τ(ε(t), ${\vec \alpha }$),则I(τ(ε(t), ${\vec \alpha }$), ${\vec \alpha }$*)=$\sum\limits_{k \in A} {{I_k}} \left( {\frac{{\tau \left( {\varepsilon \left( t \right),\vec \alpha } \right)}}{{\delta _k^*}}} \right) + \sum\limits_{k \in A} {{I_k}} \left( {\frac{{\tau \left( {\varepsilon \left( t \right),\vec \alpha } \right)}}{{{\delta _k}}}} \right) = \sum\limits_{k = 1}^m {{I_k}} \left( {\frac{{\tau \left( {\varepsilon \left( t \right),\vec \alpha } \right)}}{{{\delta _k}}}} \right) = \varepsilon \left( t \right)$.即τ(ε(t), ${\vec \alpha }$)=τ(ε(t), ${\vec \alpha }$*).如果k$ \notin $A,则δk*=δkτ(ε(t), ${\vec \alpha }$)=τ(ε(t), ${\vec \alpha }$*),(15) 式显然成立.如果kA,则有$\frac{1}{{{\delta _k}}}$τ(ε(t), ${\vec \alpha }$)≥$\frac{1}{{\delta _k^*}}$τ(ε(t), ${\vec \alpha }$)≥U′k(ck),Ik($\frac{1}{{\delta _k^*}}$τ(ε(t), ${\vec \alpha }$))=Ik($\frac{1}{{\delta _k^*}}$τ(ε(t), ${\vec \alpha }$*)).即${\vec \alpha }$*=(δ*, δ2*, …, δm*)是(8) 式的解.此定理表明(8) 式的解不唯一,但最优消费过程${{{\hat c}_k}}$(t)(k=1, …, m)是唯一确定的.

定理4  优化问题

$ U\left( {c,\mathit{\vec \alpha }} \right) \buildrel \Delta \over = \mathop {\max }\limits_{\begin{array}{*{20}{c}} {{c_1} \ge {{\bar c}_1}, \cdots ,{c_m} \ge {{\bar c}_m}}\\ {{c_{_1}}{\rm{ + }}{c_{_2}}{\rm{ + }} \cdots + {c_m} = c} \end{array}} \sum\limits_{k = 1}^m {{\mathit{\delta }_k}{U_k}\left( {{c_k}\left( t \right)} \right)} $ (16)

的解为(9) 式,且U′(c, ${\vec \alpha }$)=τ(c, ${\vec \alpha }$).

证明  依据效用函数的定义, 可得

$ \begin{align} & \sum\limits_{k=1}^{m}{{{\delta }_{k}}{{U}_{k}}}\left( {{c}_{k}} \right)\le \sum\limits_{k=1}^{m}{{{\delta }_{k}}\left[ {{U}_{k}}\left( {{{\hat{c}}}_{k}} \right)+\left( {{c}_{k}}-{{{\hat{c}}}_{k}} \right)U_{k}^{'}\left( {{{\hat{c}}}_{k}} \right) \right]}=\\ &\sum\limits_{k=1}^{m}{{{\delta }_{k}}{{U}_{k}}}\left( {{{\hat{c}}}_{k}} \right)+\sum\limits_{\left\{ k\left| {{{\hat{c}}}_{k}} \right.={{{\bar{c}}}_{k}} \right\}}^{m}{{{\delta }_{k}}U_{k}^{'}}\left( {{{\hat{c}}}_{k}} \right)\left( {{c}_{k}}-{{{\hat{c}}}_{k}} \right)+ \\ & \mathit{\tau }\left( c,\vec{\alpha } \right)\sum\limits_{\left\{ k\left| {{{\hat{c}}}_{k}} \right.>{{{\bar{c}}}_{k}} \right\}}^{m}{\left( {{c}_{k}}-{{{\hat{c}}}_{k}} \right)}\le \sum\limits_{k=1}^{m}{{{\delta }_{k}}{{U}_{k}}}\left( {{{\hat{c}}}_{k}} \right)+\mathit{\tau }\left( c,\vec{\alpha } \right)\sum\limits_{k=1}^{m}{\left( {{c}_{k}}-{{{\hat{c}}}_{k}} \right)}=\sum\limits_{k=1}^{m}{{{\delta }_{k}}{{U}_{k}}}\left( {{{\hat{c}}}_{k}} \right). \\ \end{align} $

因此(9) 式是优化问题(16) 的解, 且有

$ U\left( {c,\mathit{\vec \alpha }} \right) = \sum\limits_{k = 1}^m {{\mathit{\delta }_k}{U_k}({I_k}(\frac{1}{{{\mathit{\delta }_k}}}\mathit{\tau }{\rm{(}}c,\mathit{\vec \alpha })))} . $ (17)

由(17) 式, 可推导出U′(c, ${\vec \alpha }$)=$\frac{{\rm{d}}}{{{\rm{d}}c}}\sum\limits_{k = 1}^m {{\delta _k}} {U_k}\left( {{I_k}\left( {\frac{1}{{{\delta _k}}}\tau \left( {c,\vec \alpha } \right)} \right)} \right) = $$\sum\limits_{k = 1}^m {\frac{1}{{{\delta _k}}}\tau \left( {c,\vec \alpha } \right)} {{I'}_k}\left( {\frac{1}{{{\delta _k}}}\tau \left( {c,\vec \alpha } \right)} \right)\tau '\left( {c,\vec \alpha } \right) = $$\sum\limits_{k = 1}^m {\tau \left( {c,\vec \alpha } \right)} \frac{{\rm{d}}}{{{\rm{d}}c}}{I_k}\left( {\frac{1}{{{\delta _k}}}\tau \left( {c,\vec \alpha } \right)} \right) = \tau \left( {c,\vec \alpha } \right)\frac{{\rm{d}}}{{{\rm{d}}c}}I\left( {\tau \left( {c,\vec \alpha } \right),\vec \alpha } \right) = \tau \left( {c,\vec \alpha } \right)$.

定理5  标准的完备的市场m=(r(t), ρi(t), μi(t), σi(t), φi(t), Si(t), i=1, 2) 是均衡的充分必要条件是

$ \begin{gathered} r\left( t \right) = \beta \left( t \right) - \frac{1}{{U'\left( {\varepsilon \left( t \right),\vec \alpha } \right)}} \hfill \\ \left[ {U''\left( {\varepsilon \left( t \right),\vec \alpha } \right)\left( {{\mu _\varepsilon }\left( t \right) - {\varphi _\varepsilon }\left( t \right)\lambda \left( t \right)} \right) + } \right.\frac{1}{2}U'''\left( {\varepsilon \left( t \right),\vec \alpha } \right)\sigma _\varepsilon ^2\left( t \right) \hfill \\ \left. { + \left( {U'\left( {\varepsilon \left( {{t^ - }} \right) + {\varphi _\varepsilon }\left( t \right),\vec \alpha } \right) - U'\left( {\varepsilon \left( {{t^ - }} \right),\vec \alpha } \right)} \right)} \right]\lambda \left( t \right), \hfill \\ \end{gathered} $ (18)
$ {{\theta }_{1}}\left( t \right)=-\frac{{{U}^{''}}\left( \varepsilon \left( t \right),\vec{\alpha } \right)}{{{U}^{'}}\left( \varepsilon \left( t \right),\vec{\alpha } \right)}{{\mathit{\sigma }}_{\varepsilon }}\left( t \right);{{\theta }_{2}}\left( t \right)=-\frac{-1}{{{U}^{'}}\left( \varepsilon \left( t \right),\vec{\alpha } \right)}\left( {{U}^{'}}\left( \varepsilon \left( {{t}^{-}} \right)+{{\mathit{\varphi }}_{\varepsilon }}\left( t \right),\vec{\alpha } \right)-\\ {{U}^{'}}\left( \varepsilon \left( {{t}^{-}} \right),\vec{\alpha } \right) \right)\lambda \left( t \right). $ (19)

证明  由(11) 式可以得到τ(ε(t), ${\vec \alpha }$)=${{{\rm{e}}^{\int_0^t {\beta \left( u \right){\rm{d}}u} }} \cdot \frac{{L\left( t \right)}}{{B\left( t \right)}}}$, 0≤tTτ(ε(0), ${\vec \alpha }$)=1,由Ito′s引理可得

$ \mathit{\tau }\left( {\varepsilon \left( t \right),\vec \alpha } \right) = 1 + \int_0^t {\mathit{\tau }\left( {\varepsilon \left( u \right),\vec \alpha } \right)} \left( {\mathit{\beta }\left( u \right) - r\left( u \right)} \right){\rm{d}}\mathit{u} - \int_0^t {\mathit{\tau }\left( {\varepsilon \left( u \right),\vec \alpha } \right){\theta _1}} \left( u \right){\rm{d}}\mathit{W}\left( u \right) - \\ \int_0^t {\mathit{\tau }\left( {\varepsilon \left( u \right),\vec \alpha } \right){\theta _2}} \left( u \right){\rm{d}}\mathit{M}\left( u \right). $ (20)

由定理4知τ(ε(t), ${\vec \alpha }$)=U′(ε(t), ${\vec \alpha }$), 0≤tT.则有

$ \begin{array}{l} \tau \left( {\varepsilon \left( t \right),\vec \alpha } \right) = 1 + \int_0^t {\left[ {U''\left( {\varepsilon \left( u \right),\vec \alpha } \right)\left( {{\mu _\varepsilon }\left( u \right) - {\varphi _\varepsilon }\left( u \right)\lambda \left( u \right)} \right) + \\ \frac{1}{2}U'''\left( {\varepsilon \left( u \right),\vec \alpha } \right)\sigma _\varepsilon ^2\left( u \right)} \right]{\rm{d}}u} + \\ \int_0^t {\left[ {U'\left( {\varepsilon \left( {{u^ - }} \right) + {\varphi _\varepsilon }\left( u \right),\vec \alpha } \right) - U'\left( {\varepsilon \left( {{u^ - }} \right),\vec \alpha } \right)} \right]\lambda \left( u \right){\rm{d}}u} + \\ \int_0^t {U''\left( {\varepsilon \left( u \right),\vec \alpha } \right){\sigma _\varepsilon }\left( u \right){\rm{d}}W\left( u \right) + } \\ \int_0^t {\left[ {U'\left( {\varepsilon \left( {{u^ - }} \right) + {\varphi _\varepsilon }\left( u \right),\vec \alpha } \right) - U'\left( {\varepsilon \left( {{u^ - }} \right),\vec \alpha } \right)} \right]\lambda \left( u \right){\rm{d}}M\left( u \right)} . \end{array} $ (21)

比较式(20) 和(21) 可以得到式(18) 和(19).

3 结论

在所建立的跳扩散模型下的金融市场m=(r(t), ρi(t), μi(t), σi(t), φi(t), Si(t), i=1, 2) 中,市场的均衡是存在的.根据所得到的结果,只需选取${\vec \alpha }$*=(δ*, δ2*, …, δm*)满足式(7) 和(8),r(t), θ1(t), θ2(t)由式(18)、(19) 和(20) 所确定,μ1(t), μ2(t)满足(3) 式,则金融市场m是均衡市场.

市场的均衡是存在的且是唯一的.由(7) 式和τ(ε(t), ${\vec \alpha }$)=τ(ε(t), ${\vec \alpha }$*)知,L(t)是唯一确定的,由(6) 式和定理2知,最优投资组合及最优消费过程(${{\hat c}_k},{{\hat \pi }_k}$)∈Ak是唯一的.

参考文献
[1]
MARKOWITZ H. Portfolio selection[J]. The fournal of finance, 1952, 7(1): 77-91. (0)
[2]
ROBERT C. Optimum consumption and portfolio rules in a continuous time model[J]. Journal of tconomics theory, 1970, 3(4): 373-413. (0)
[3]
JEANBLANC J M, PONTIER M. Optimal portfolio for a small investor in a market model with discontinuous prices[J]. Applied mathematical and optimization, 1990, 22(1): 287-310. DOI:10.1007/BF01447332 (0)
[4]
FOLLMER H, LEUKERT P. Efficient hedging:cost versus shortfall risk[J]. Finance and stochastics, 2000, 4(2): 117-146. DOI:10.1007/s007800050008 (0)
[5]
NAKANO Y. Minimization of shortfall risk in a jump-diffusion model[J]. Statistics and probability letters, 2004, 67(1): 87-95. DOI:10.1016/j.spl.2003.11.016 (0)
[6]
杨云锋, 金浩. 完备市场下亏空风险的最小化[J]. 经济数学, 2011, 28(4): 30-33. (0)
[7]
PHAM H. Dynami Lp-hedging in discrete time under cone constraints[J]. Siam journal on control and optimization, 2000, 38(3): 665-682. DOI:10.1137/S0363012998341095 (0)
[8]
王永茂, 王丹, 龙梅, 等. 跳-扩散风险模型下的最优投资和再保策略[J]. 郑州大学学报(理学版), 2015, 47(1): 50-54. (0)
[9]
杨鹏. Heston模型下最优投资-消费策略选择[J]. 郑州大学学报(理学版), 2016, 48(1): 17-22. (0)
[10]
杨云锋, 金浩. 不完备市场下的财富优化[J]. 江西师范大学学报(自然科学版), 2012, 36(3): 245-248. (0)
[11]
杨云锋, 夏小刚, 杨秀妮. 跳跃扩散过程的期权定价模型[J]. 数学的实践与认识, 2010, 40(6): 40-45. (0)
[12]
杨云锋, 金浩. 波动率随机时的财富优化模型[J]. 统计与决策, 2014, 404(8): 32-35. (0)
[13]
DUFFIE D. Dynamic asset pricing theory[M]. New Jersay: Princeton University Press, 2007. (0)
[14]
BACK K. Martingale pricing[J]. Financial economics, 2010, 2(2): 235-250. (0)
[15]
RIEGER M O. Optimal financial investments for non-concave utilityfunctions[J]. Economics letters, 2012, 114(3): 239-240. DOI:10.1016/j.econlet.2011.10.029 (0)