2. 南京师范大学 数学科学学院 江苏 南京 210023
2. School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China
Lomax分布在寿命试验数据处理中起着重要的作用,很多统计学者对此分布进行了深入的探讨.文献[1]研究了Lomax分布参数极大似然估计的存在性和估计量的收敛性.文献[2]在完全样本下研究了两个参数及分位数的区间估计和假设检验.文献[3]研究了基于缺失数据样本下Lomax分布尺度参数的估计,并说明了确定最优置信区间的方法.文献[4-8]在不同损失函数下,当尺度参数已知时,讨论了形状参数的贝叶斯估计问题.在利用统计方法处理试验数据时,如何根据缺失数据进行统计推断是统计分析中的一个重要问题.文献[9-12]讨论了多种分布在缺失数据样本下的参数估计问题,而对Lomax分布在定时截尾数据缺失样本下的参数估计还没有人研究.本文假设尺度参数已知,在定时截尾数据缺失样本下给出了形状参数的极大似然估计,证明了估计量的相合性和渐近正态性,并给出了形状参数的置信区间和假设检验.
1 极大似然估计及其渐近性质设样本观测数据来自Lomax分布总体,其密度函数为
$ f\left( {x;\theta, \lambda } \right) = \frac{\theta }{\lambda }{\left( {1 + \frac{x}{\lambda }} \right)^{ - \left( {\theta + 1} \right)}}, x, \theta, \lambda > 0, $ | (1) |
其中:θ为形状参数;λ为尺度参数;在本文中假设尺度参数已知.
现对上述Lomax分布总体进行n次独立观测,并到T0时刻停止,每个样本观测值以概率1-p缺失, 以概率p被观测.用(Zi, δi, αi), i=1, 2, …,n表示总体观测值,其中:Zi=min(T0, Xi), Xi表示第i个样品的寿命;αi=I{Xi≤T0}-I{Xi>T0},即观测到具体的失效时间αi=1,否则αi=-1,并且第i个样品观测数据缺失时记δi=0,否则δi=1.
下面用极大似然估计方法对未知形状参数θ进行估计,基于上述样本观测值(Zi, δi, αi), i=1, 2, …, n, 可得到似然函数为L(θ)=
$ \hat \theta = \frac{{\sum\limits_{i = 1}^n {{A_i}} }}{{\sum\limits_{i = 1}^n {\left( {{A_i} + {B_i}} \right)\ln \left( {1 + {\mathit{Z}_i}/\lambda } \right)} }} = \frac{{\sum\limits_{i = 1}^n {\left( {{\alpha _i}{\mathit{\delta }_i} + \alpha _i^2\delta _i^2} \right)} }}{{2\sum\limits_{i = 1}^n { {\alpha _i^2\delta _i^2} \ln \left( {1 + {\mathit{Z}_i}/\lambda } \right)} }}. $ | (2) |
由θ的极大似然估计可得到如下定理.
定理1 若(Zi, δi, αi), i=1, 2, …, n,是来自Lomax分布总体(1) 的样本观测值,则有
证明 由于{αiδi, 1≤i≤n}为独立同分布随机变量,因此由强大数定律可得
$ \hat \theta = \frac{{\sum\limits_{i = 1}^n {\left( {{\alpha _i}{\mathit{\delta }_i} + \alpha _i^2\delta _i^2} \right)} }}{{2\sum\limits_{i = 1}^n { {\alpha _i^2\delta _i^2} \ln \left( {1 + {\mathit{Z}_i}/\lambda } \right)} }} = \frac{{\frac{1}{n}\sum\limits_{i = 1}^n {{\alpha _i}{\mathit{\delta }_i}} + \frac{1}{n}\sum\limits_{i = 1}^n {\alpha _i^2\delta _i^2} }}{{2\frac{1}{n}\sum\limits_{i = 1}^n {\alpha _i^2\delta _i^2\ln \left( {1 + {\mathit{Z}_i}/\lambda } \right)} }} \to \frac{{p\left[{1-2{{\left( {1 + {T_0}/\lambda } \right)}^{-\theta }}} \right] + p}}{{\frac{{2p}}{\theta }\left[{1-{{\left( {1 + {T_0}/\lambda } \right)}^{^{-\theta }}}} \right]}} = \theta, a.s. $ |
引理1[9] 记Tn=(T1n, …, Tkn)T, β=(β1, …, βk)T,设
定理2 在前述记号下,
证明 令
$ {\sigma _{11}} = E\left( {\alpha _1^2\mathit{\delta }_1^2} \right) - {\left( {E\left( {{\alpha _1}{\mathit{\delta }_1}} \right)} \right)^2} = p - {p^2}{\left[{1-2{{\left( {1 + {T_0}/\lambda } \right)}^{^{-\theta }}}} \right]^2}, $ |
$ \begin{array}{l} {\sigma _{12}} = {\sigma _{21}} = E\left( {\alpha _1^3\mathit{\delta }_1^3} \right) - E\left( {{\alpha _1}{\mathit{\delta }_1}} \right)E\left( {\alpha _1^2\mathit{\delta }_1^2} \right) = \\p\left[{1-2{{\left( {1 + {T_0}/\lambda } \right)}^{^{-\theta }}}} \right] - {p^2}\left[{1-2{{\left( {1 + {T_0}/\lambda } \right)}^{^{-\theta }}}} \right] = \left( {p - {p^2}} \right)\left[{1-2{{\left( {1 + {T_0}/\lambda } \right)}^{^{-\theta }}}} \right], \end{array} $ |
$ \begin{array}{l} {\sigma _{13}} = {\sigma _{31}} = 2E\left( {\alpha _1^3\mathit{\delta }_1^3\ln \left( {1 + {Z_1}/\lambda } \right)} \right) - 2E\left( {{\alpha _1}{\mathit{\delta }_1}} \right)E\left( {\alpha _1^2\mathit{\delta }_1^2\ln \left( {1 + {Z_1}/\lambda } \right)} \right) =\\ \frac{{2p}}{\theta }\left[{1-{{\left( {1 + {T_0}/\lambda } \right)}^{^{-\theta }}}} \right] - 4p{\left( {1 + {T_0}/\lambda } \right)^{^{ - \theta }}}\ln \left( {1 + {T_0}/\lambda } \right) - \frac{{2{p^2}}}{\theta }\\\left( {1 - 2{{\left( {1 + {T_0}/\lambda } \right)}^{^{ - \theta }}}} \right)\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{^{ - \theta }}}} \right), \end{array} $ |
$ {\sigma _{22}} = E\left( {\alpha _1^4\mathit{\delta }_1^4} \right) - {\left( {E\left( {\alpha _1^2\mathit{\delta }_1^2} \right)} \right)^2} = p - {p^2}, $ |
$ \begin{array}{l} {\sigma _{23}} = {\sigma _{32}} = 2E\left( {\alpha _1^4\mathit{\delta }_1^4\ln \left( {1 + {Z_1}/\lambda } \right)} \right) - \\ 2E\left( {\alpha _1^2\mathit{\delta }_1^2} \right)E\left( {\alpha _1^2\mathit{\delta }_1^2\ln \left( {1 + {Z_1}/\lambda } \right)} \right) = \frac{{2p\left( {1 - p} \right)}}{\theta }\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{^{ - \theta }}}} \right), \end{array} $ |
$ \begin{array}{l} {\sigma _{33}} = 4E\left( {\alpha _1^4\mathit{\delta }_1^4{{\left[{\ln \left( {1 + {Z_1}/\lambda } \right)} \right]}^2}} \right) - 4{\left[{E\left( {\alpha _1^2\mathit{\delta }_1^2\ln \left( {1 + {Z_1}/\lambda } \right)} \right)} \right]^2} = \\\frac{{8p}}{{{\theta ^2}}}\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{^{ - \theta }}}} \right) - \frac{{8p}}{\theta }{\left( {1 + {T_0}/\lambda } \right)^{^{ - \theta }}}\ln \left( {1 + {T_0}/\lambda } \right) - \frac{{4{p^2}}}{{{\theta ^2}}}{\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{^{ - \theta }}}} \right)^2}, \end{array} $ |
$ g\left( {{t_1}, {t_2}, {t_3}} \right) = \frac{{{t_1} + {t_2}}}{{{t_3}}}, {T_{1n}} = \frac{1}{n}\sum\limits_{i = 1}^n {{\alpha _i}} {\mathit{\delta }_i}, {\mathit{\beta }_1} = p\left( {1 - 2{{\left( {1 + {T_0}/\lambda } \right)}^{ - \theta }}} \right), $ |
$ {\mathit{T}_{2n}} = \frac{1}{n}\sum\limits_{i = 1}^n {\alpha _i^2} \delta _i^2, {\mathit{\beta }_2} = p, {T_{3n}} = \frac{2}{n}\sum\limits_{i = 1}^n {\alpha _i^2\delta _i^2\ln } \left( {1 + {Z_i}/\lambda } \right), {\mathit{\beta }_3} =\\ \frac{{2p}}{\theta }\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{ - \theta }}} \right), $ |
可得
$ \frac{{\partial g}}{{\partial {\mathit{\beta }_1}}} = \frac{{\partial g}}{{\partial {\mathit{\beta }_2}}} = \frac{1}{{{\mathit{\beta }_3}}} = \frac{\theta }{{2p\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{ - \theta }}} \right)}}\frac{{\partial g}}{{\partial {\mathit{\beta }_3}}} = - \frac{{{\mathit{\beta }_{\rm{1}}}\mathit{ + }{\mathit{\beta }_{\rm{2}}}}}{{\mathit{\beta }_3^2}} = - \frac{{{\theta _1}}}{{{\mathit{\beta }_3}}} = - \frac{{{\theta ^2}}}{{2p\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{ - \theta }}} \right)}}. $ |
因此由引理1可得到
$ {\sigma ^2} = \left( {\frac{{\partial g}}{{\partial {\mathit{\beta }_1}}}, \frac{{\partial g}}{{\partial {\mathit{\beta }_2}}}, \frac{{\partial g}}{{\partial {\mathit{\beta }_3}}}} \right)\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}{\left( {\frac{{\partial g}}{{\partial {\mathit{\beta }_1}}}, \frac{{\partial g}}{{\partial {\mathit{\beta }_2}}}, \frac{{\partial g}}{{\partial {\mathit{\beta }_3}}}} \right)^{\rm{T}}} = \frac{{{\theta ^2}}}{{p\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{ - \theta }}} \right)}}, $ |
即
在实际中,对参数真值范围的研究,可以归结到参数的置信区间问题.对于本文中讨论的问题可得到如下定理.
定理3 在前面的记号下,如果
$ \left( {\hat \theta - {u_{1 - \mathit{\gamma }/2}}\sqrt {\frac{{{{\hat \theta }^2}}}{{np\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{ - \hat \theta }}} \right)}}, } \hat \theta + {u_{1 - \mathit{\gamma }/2}}\sqrt {\frac{{{{\hat \theta }^2}}}{{np\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{ - \hat \theta }}} \right)}}} } \right), $ |
其中uγ为标准正态分布的γ下分位数.
证明 由于
$ p\left\{ { - {u_{1 - \mathit{\gamma }/2}} < \frac{{\sqrt {np\left( {1-{{\left( {1 + {T_0}/\lambda } \right)}^{-\hat \theta }}} \right)} \left( {\hat \theta-\theta } \right)}}{{\hat \theta }} < {u_{1 - \mathit{\gamma }/2}}} \right\} \approx 1 - \mathit{\gamma, } $ |
$ \mathit{p}\left\{ {\hat \theta - {u_{1 - \mathit{\gamma }/2}}\frac{{\hat \theta }}{{\sqrt {np\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{ - \hat \theta }}} \right)} }} < \theta < \hat \theta + {u_{1 - \mathit{\gamma }/2}}\frac{{\hat \theta }}{{\sqrt {np\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{ - \hat \theta }}} \right)} }}} \right\} \approx 1 - \mathit{\gamma, } $ |
因此θ的置信水平为1-γ的近似置信区间为
$ \left( {\hat \theta - {u_{1 - \mathit{\gamma }/2}}\frac{{\hat \theta }}{{\sqrt {np\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{ - \hat \theta }}} \right)} }}, \hat \theta + {u_{1 - \mathit{\gamma }/2}}\frac{{\hat \theta }}{{\sqrt {np\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{ - \hat \theta }}} \right)} }}} \right). $ |
由于Lomax的分布函数为
因为xp是θ的单调递减函数,因此当λ已知时,p分位数xp的置信水平为1-γ的近似置信区间为
$ \left( {\lambda \left( {{{\left( {1 - p} \right)}^{ - \frac{1}{{{{\hat \theta }_U}}}}} - 1} \right), \lambda \left( {{{\left( {1 - p} \right)}^{ - \frac{1}{{{{\hat \theta }_L}}}}} - 1} \right)} \right), $ |
其中:
由文献[4]知,Lomax分布的失效率函数为
同样可得到可靠度的置信水平为1-γ的近似置信区间为
1) 对于假设检验问题H0:θ=θ0↔H1:θ≠θ0,其中θ0已知,当H0成立时
$ {\mathit{\boldsymbol{W}}_1} = \left\{ {\left( {{\mathit{Z}_i}, {\delta _i}, {\alpha _i}} \right), i = 1, 2, \cdots, n} ||\frac{{\sqrt {np\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{ - \hat \theta }}} \right)} \left( {\hat \theta - {\theta _0}} \right)}}{{\hat \theta }}| \ge {u_{1 - \mathit{\gamma }/2}} \right\}. $ |
2) 对于假设检验问题H0:θ>θ0↔H1:θ≤θ0.同理可得,对于给定的显著性水平γ(0 < γ < 1),检验的拒绝域为
3) 对于假设检验问题H0:θ < θ0↔H1:θ≥θ0.同理可得,对于给定的显著性水平γ(0 < γ < 1),检验的拒绝域为
$ {\mathit{\boldsymbol{W}}_3} = \left\{ {\left( {{\mathit{Z}_i}, {\delta _i}, {\alpha _i}} \right), i = 1, 2, \cdots, n} | {\frac{{\sqrt {np\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{ - \hat \theta }}} \right)} \left( {\hat \theta - {\theta _0}} \right)}}{{\hat \theta }}} \ge {u_{1 - \mathit{\gamma }}} \right\}. $ |
根据定理2可以得到两个独立Lomax分布总体形状参数之差的区间估计和假设检验问题.
3 随机模拟当λ分别取1.2和2时,在形状参数θ取不同真值的情况下,通过随机模拟的方法,产生一个服从Lomax分布(1) 的样本,且样本容量n=100.取缺失概率1-P=0.1,置信水平1-γ=0.95,对于给定截尾时间T0,利用上述样本可以得到参数θ的估计,以上过程重复1 000次,可以得到参数估计的均值、均方误差、置信区间的上下限均值及覆盖率,模拟结果见表 1.对形状参数的估计都很接近参数真值,并且均方误差较小.θ的真值介于下限均值与上限均值之间,覆盖率很接近近似置信水平0.95.
![]() |
表 1 参数估计的均值、均方误差(MSE)、置信区间的上下限均值及覆盖率 Table 1 Mean value and mean square error (MSE) of parameter estimation, the upper and lower average and coverage of the confidence interval |
[1] |
李开灿, 刘大飞, 林存津. Lomax分布极大似然估计的两点研究[J]. 数学杂志, 2016, 36(1): 207-213. ( ![]() |
[2] |
龙兵. 两参数Lomax分布中参数的区间估计和假设检验[J]. 江西师范大学学报(自然科学版), 2014, 38(2): 176-179. ( ![]() |
[3] |
龙兵. 缺失数据样本下Lomax分布尺度参数的估计[J]. 统计与决策, 2014, 19: 21-23. ( ![]() |
[4] |
龙兵, 张明波. 定数截尾下Lomax分布失效率和可靠度的贝叶斯估计[J]. 华南师范大学学报(自然科学版), 2016, 48(2): 102-106. ( ![]() |
[5] |
肖小英, 任海平. 熵损失函数下两参数Lomax分布形状参数的Bayes估计[J]. 数学的实践与认识, 2010, 40(5): 227-230. ( ![]() |
[6] |
周明元. 对称熵损失函数下两参数Lomax分布形状参数的Bayes估计[J]. 统计与决策, 2010(17): 8-10. ( ![]() |
[7] |
姚惠, 谢林. 不同损失下Lomax分布形状参数的Bayes估计[J]. 数学杂志, 2011, 31(6): 1131-1134. ( ![]() |
[8] |
姚惠. Linex损失下Lomax分布形状参数的Bayes估计[J]. 统计与决策, 2011(16): 173-175. ( ![]() |
[9] |
赵志文, 王思洋, 王瑞庭, 等. 定时截尾下具有部分缺失数据两个指数总体参数的估计与检验[J]. 吉林大学学报(理学版), 2009, 47(1): 26-30. ( ![]() |
[10] |
龙兵, 王秋节, 习长新. 具有部分缺失数据的两个Pareto分布总体参数的估计和检验[J]. 贵州大学学报(自然科学版), 2016, 33(1): 9-12. ( ![]() |
[11] |
何朝兵. 右删失左截断数据下离散威布尔分布的参数估计[J]. 郑州大学学报(理学版), 2016, 48(2): 18-23. ( ![]() |
[12] |
赵志文, 赖民, 宋立新, 等. 具有部分缺失数据的两个对数正态分布总体参数的估计与检验[J]. 统计与决策, 2009(20): 7-9. ( ![]() |