郑州大学学报(理学版)  2017, Vol. 49 Issue (2): 19-23  DOI: 10.13705/j.issn.1671-6841.2016213

引用本文  

龙兵, 朱全新, 习长新. 定时截尾缺失数据样本下Lomax分布总体形状参数的估计与检验[J]. 郑州大学学报(理学版), 2017, 49(2): 19-23.
LONG Bing, ZHU Quanxin, XI Changxin. Shape Parameter Estimation and Hypothesis Testing of Lomax Population under Type I Censoring Sample with Missing Data[J]. Journal of Zhengzhou University(Natural Science Edition), 2017, 49(2): 19-23.

基金项目

国家自然科学基金项目(61374080);湖北省教育厅科学研究项目(B2016264)

通信作者

作者简介

龙兵(1973—),男,湖北荆门人,副教授,主要从事数理统计的研究, E-mail:qh-longbing@163.com

文章历史

收稿日期:2016-08-27
定时截尾缺失数据样本下Lomax分布总体形状参数的估计与检验
龙兵1 , 朱全新2 , 习长新1     
1. 荆楚理工学院 数理学院 湖北 荆门 448000;
2. 南京师范大学 数学科学学院 江苏 南京 210023
摘要:在定时截尾缺失数据样本下研究了Lomax分布形状参数的估计和假设检验.在尺度参数已知的条件下给出了形状参数的极大似然估计,证明了估计量的相合性和渐近正态性,并给出了形状参数的置信区间和假设检验,最后通过蒙特卡洛随机模拟说明了估计的优良性.
关键词Lomax分布    定时截尾    缺失数据    极大似然估计    
Shape Parameter Estimation and Hypothesis Testing of Lomax Population under Type I Censoring Sample with Missing Data
LONG Bing1 , ZHU Quanxin2 , XI Changxin1     
1. School of Mathematics and Physics, Jingchu University of Technology, Jingmen 448000, China;
2. School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China
Abstract: The shape parameters estimation and hypothesis test were studied on Lomax distribution under type I censoring sample with missing data. Maximum likelihood estimation of the shape parameter was discussed on condition that the scale parameter had been known, and the consistency and asymptotic normality of the estimators were proved. Moreover, the confidence interval and hypothesis test of shape parameters were given. Finally, Monte Carlo simulation was used to illustrate the excellent performance of the estimator.
Key words: Lomax distribution    type I censored sample    missing data    maximum likelihood estimation    
0 引言

Lomax分布在寿命试验数据处理中起着重要的作用,很多统计学者对此分布进行了深入的探讨.文献[1]研究了Lomax分布参数极大似然估计的存在性和估计量的收敛性.文献[2]在完全样本下研究了两个参数及分位数的区间估计和假设检验.文献[3]研究了基于缺失数据样本下Lomax分布尺度参数的估计,并说明了确定最优置信区间的方法.文献[4-8]在不同损失函数下,当尺度参数已知时,讨论了形状参数的贝叶斯估计问题.在利用统计方法处理试验数据时,如何根据缺失数据进行统计推断是统计分析中的一个重要问题.文献[9-12]讨论了多种分布在缺失数据样本下的参数估计问题,而对Lomax分布在定时截尾数据缺失样本下的参数估计还没有人研究.本文假设尺度参数已知,在定时截尾数据缺失样本下给出了形状参数的极大似然估计,证明了估计量的相合性和渐近正态性,并给出了形状参数的置信区间和假设检验.

1 极大似然估计及其渐近性质

设样本观测数据来自Lomax分布总体,其密度函数为

$ f\left( {x;\theta, \lambda } \right) = \frac{\theta }{\lambda }{\left( {1 + \frac{x}{\lambda }} \right)^{ - \left( {\theta + 1} \right)}}, x, \theta, \lambda > 0, $ (1)

其中:θ为形状参数;λ为尺度参数;在本文中假设尺度参数已知.

现对上述Lomax分布总体进行n次独立观测,并到T0时刻停止,每个样本观测值以概率1-p缺失, 以概率p被观测.用(Zi, δi, αi), i=1, 2, …,n表示总体观测值,其中:Zi=min(T0, Xi), Xi表示第i个样品的寿命;αi=I{XiT0}-I{Xi>T0},即观测到具体的失效时间αi=1,否则αi=-1,并且第i个样品观测数据缺失时记δi=0,否则δi=1.

下面用极大似然估计方法对未知形状参数θ进行估计,基于上述样本观测值(Zi, δi, αi), i=1, 2, …, n, 可得到似然函数为L(θ)=$\prod\limits_{i = 1}^n {{{\left[{\frac{\theta }{\lambda }{{\left( {1 + \frac{{{Z_i}}}{\lambda }} \right)}^{-\left( {\theta + 1} \right)}}} \right]}^{{A_i}}}{{\left[{{{\left( {1 + \frac{{{Z_i}}}{\lambda }} \right)}^{-\theta }}} \right]}^{{B_i}}}} $,其中Ai=αiδi(αiδi+1)/2,Bi=αiδi(αiδi-1)/2,i=1, 2, …, n.对似然函数取对数,并由$ \frac{{\partial \ln L\left( \theta \right)}}{{\partial \theta }} = 0$,解得θ的极大似然估计为

$ \hat \theta = \frac{{\sum\limits_{i = 1}^n {{A_i}} }}{{\sum\limits_{i = 1}^n {\left( {{A_i} + {B_i}} \right)\ln \left( {1 + {\mathit{Z}_i}/\lambda } \right)} }} = \frac{{\sum\limits_{i = 1}^n {\left( {{\alpha _i}{\mathit{\delta }_i} + \alpha _i^2\delta _i^2} \right)} }}{{2\sum\limits_{i = 1}^n { {\alpha _i^2\delta _i^2} \ln \left( {1 + {\mathit{Z}_i}/\lambda } \right)} }}. $ (2)

θ的极大似然估计可得到如下定理.

定理1  若(Zi, δi, αi), i=1, 2, …, n,是来自Lomax分布总体(1) 的样本观测值,则有$\hat \theta \to \theta $, a.s.

证明  由于{αiδi, 1≤in}为独立同分布随机变量,因此由强大数定律可得$\frac{1}{n}\sum\limits_{i = 1}^n {{\alpha _i}{\delta _i} \to E\left( {{\alpha _i}{\delta _i}} \right)} $, a.s. 其中E(α1δ1)=E(α1)E(δ1)=p[1-2(1+T0/λ)-θ],因此$\frac{1}{n}\sum\limits_{i = 1}^n {{\alpha _i}{\delta _i} \to p\left[{1-2{{\left( {1 + {T_0}/\lambda } \right)}^{-\theta }}} \right], a.s} $.又由于$E\left( {\alpha _1^2\delta _1^2} \right) = E\left( {\alpha _1^2} \right)E\left( {\delta _1^2} \right) = p, E\left( {\alpha _1^2\delta _1^2\ln \left( {1 + {Z_1}/\lambda } \right)} \right) = \frac{p}{\theta }\left[{1-{{\left( {1 + {T_0}/\lambda } \right)}^{-\theta }}} \right] $,则$\frac{1}{n}\sum\limits_{i = 1}^n {\alpha _1^2\delta _1^2 \to p, a.s.\frac{1}{n}\sum\limits_{i = 1}^n {\alpha _i^2\delta _i^2\ln} \left( {1 + {Z_i}/\lambda } \right) \to \frac{p}{\theta }\left[{1-{{\left( {1 + {T_0}/\lambda } \right)}^{-\theta }}} \right], a.s.} $由Slusky定理得到

$ \hat \theta = \frac{{\sum\limits_{i = 1}^n {\left( {{\alpha _i}{\mathit{\delta }_i} + \alpha _i^2\delta _i^2} \right)} }}{{2\sum\limits_{i = 1}^n { {\alpha _i^2\delta _i^2} \ln \left( {1 + {\mathit{Z}_i}/\lambda } \right)} }} = \frac{{\frac{1}{n}\sum\limits_{i = 1}^n {{\alpha _i}{\mathit{\delta }_i}} + \frac{1}{n}\sum\limits_{i = 1}^n {\alpha _i^2\delta _i^2} }}{{2\frac{1}{n}\sum\limits_{i = 1}^n {\alpha _i^2\delta _i^2\ln \left( {1 + {\mathit{Z}_i}/\lambda } \right)} }} \to \frac{{p\left[{1-2{{\left( {1 + {T_0}/\lambda } \right)}^{-\theta }}} \right] + p}}{{\frac{{2p}}{\theta }\left[{1-{{\left( {1 + {T_0}/\lambda } \right)}^{^{-\theta }}}} \right]}} = \theta, a.s. $

引理1[9]  记Tn=(T1n, …, Tkn)T, β=(β1, …, βk)T,设$ \sqrt n \left( {{\pmb{T}_n}-\pmb{\beta }} \right)\mathop \to \limits^L N\left( {0, \mathit{\boldsymbol{ \boldsymbol{\varSigma} }} } \right)$其中Σ=(σij)k×k.又设g(t1, …, tn)对各ti有连续偏导数,则当n→∞时,有$ \sqrt n \left[{g\left( {{T_{1n}}, \cdots, {T_{kn}}} \right)-g\left( {{\beta _1}, \cdots {\beta _k}} \right)} \right]\mathop \to \limits^L N\left( {0, {\sigma ^2}\left( \pmb{\beta } \right)} \right)$,其中${\sigma ^2}\left( \pmb{\beta } \right) = \sum {} \sum {} \left( {\frac{{\partial g}}{{\partial {\beta _i}}}\frac{{\partial g}}{{\partial {\beta _j}}}{\sigma _{ij}}} \right) $.

定理2  在前述记号下,$\sqrt n \left( {\hat \theta- \theta } \right)\mathop \to \limits^L N\left( {0, \frac{{{\theta ^2}}}{{p\left[{1-{{\left( {1 + {T_0}/\lambda } \right)}^{-\theta }}} \right]}}} \right) $.

证明  令${\pmb{W}_i} = {\left( {{\alpha _i}{\delta _i}, \alpha _i^2\delta _i^2, 2\alpha _i^2\delta _i^2\ln \left( {1 + {Z_i}/\lambda } \right)} \right)^{\rm{T}}} $,则{Wi, i≥1}为独立同分布随机变量序列,且E(W1)=(p[1-2(1+T0/λ)-θ], $p, \frac{{2p}}{\theta }\left[{1-{{\left( {1 + {T_0}/\lambda } \right)}^{-\theta }}} \right] $)T,令Σ=E(W1-EW1)(W1-EW1)T,则由多元中心极限定理可得$ \sqrt n \left( {\frac{1}{n}\sum\limits_{i = 1}^n {{\pmb{W}_i}-\pmb{E}\left( {{W_1}} \right)} } \right)\mathop \to \limits^L N\left( {0, \mathit{\boldsymbol{ \boldsymbol{\varSigma} }} } \right)$, 记Σ=(σij), (i, j=1, 2, 3).则

$ {\sigma _{11}} = E\left( {\alpha _1^2\mathit{\delta }_1^2} \right) - {\left( {E\left( {{\alpha _1}{\mathit{\delta }_1}} \right)} \right)^2} = p - {p^2}{\left[{1-2{{\left( {1 + {T_0}/\lambda } \right)}^{^{-\theta }}}} \right]^2}, $
$ \begin{array}{l} {\sigma _{12}} = {\sigma _{21}} = E\left( {\alpha _1^3\mathit{\delta }_1^3} \right) - E\left( {{\alpha _1}{\mathit{\delta }_1}} \right)E\left( {\alpha _1^2\mathit{\delta }_1^2} \right) = \\p\left[{1-2{{\left( {1 + {T_0}/\lambda } \right)}^{^{-\theta }}}} \right] - {p^2}\left[{1-2{{\left( {1 + {T_0}/\lambda } \right)}^{^{-\theta }}}} \right] = \left( {p - {p^2}} \right)\left[{1-2{{\left( {1 + {T_0}/\lambda } \right)}^{^{-\theta }}}} \right], \end{array} $
$ \begin{array}{l} {\sigma _{13}} = {\sigma _{31}} = 2E\left( {\alpha _1^3\mathit{\delta }_1^3\ln \left( {1 + {Z_1}/\lambda } \right)} \right) - 2E\left( {{\alpha _1}{\mathit{\delta }_1}} \right)E\left( {\alpha _1^2\mathit{\delta }_1^2\ln \left( {1 + {Z_1}/\lambda } \right)} \right) =\\ \frac{{2p}}{\theta }\left[{1-{{\left( {1 + {T_0}/\lambda } \right)}^{^{-\theta }}}} \right] - 4p{\left( {1 + {T_0}/\lambda } \right)^{^{ - \theta }}}\ln \left( {1 + {T_0}/\lambda } \right) - \frac{{2{p^2}}}{\theta }\\\left( {1 - 2{{\left( {1 + {T_0}/\lambda } \right)}^{^{ - \theta }}}} \right)\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{^{ - \theta }}}} \right), \end{array} $
$ {\sigma _{22}} = E\left( {\alpha _1^4\mathit{\delta }_1^4} \right) - {\left( {E\left( {\alpha _1^2\mathit{\delta }_1^2} \right)} \right)^2} = p - {p^2}, $
$ \begin{array}{l} {\sigma _{23}} = {\sigma _{32}} = 2E\left( {\alpha _1^4\mathit{\delta }_1^4\ln \left( {1 + {Z_1}/\lambda } \right)} \right) - \\ 2E\left( {\alpha _1^2\mathit{\delta }_1^2} \right)E\left( {\alpha _1^2\mathit{\delta }_1^2\ln \left( {1 + {Z_1}/\lambda } \right)} \right) = \frac{{2p\left( {1 - p} \right)}}{\theta }\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{^{ - \theta }}}} \right), \end{array} $
$ \begin{array}{l} {\sigma _{33}} = 4E\left( {\alpha _1^4\mathit{\delta }_1^4{{\left[{\ln \left( {1 + {Z_1}/\lambda } \right)} \right]}^2}} \right) - 4{\left[{E\left( {\alpha _1^2\mathit{\delta }_1^2\ln \left( {1 + {Z_1}/\lambda } \right)} \right)} \right]^2} = \\\frac{{8p}}{{{\theta ^2}}}\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{^{ - \theta }}}} \right) - \frac{{8p}}{\theta }{\left( {1 + {T_0}/\lambda } \right)^{^{ - \theta }}}\ln \left( {1 + {T_0}/\lambda } \right) - \frac{{4{p^2}}}{{{\theta ^2}}}{\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{^{ - \theta }}}} \right)^2}, \end{array} $
$ g\left( {{t_1}, {t_2}, {t_3}} \right) = \frac{{{t_1} + {t_2}}}{{{t_3}}}, {T_{1n}} = \frac{1}{n}\sum\limits_{i = 1}^n {{\alpha _i}} {\mathit{\delta }_i}, {\mathit{\beta }_1} = p\left( {1 - 2{{\left( {1 + {T_0}/\lambda } \right)}^{ - \theta }}} \right), $
$ {\mathit{T}_{2n}} = \frac{1}{n}\sum\limits_{i = 1}^n {\alpha _i^2} \delta _i^2, {\mathit{\beta }_2} = p, {T_{3n}} = \frac{2}{n}\sum\limits_{i = 1}^n {\alpha _i^2\delta _i^2\ln } \left( {1 + {Z_i}/\lambda } \right), {\mathit{\beta }_3} =\\ \frac{{2p}}{\theta }\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{ - \theta }}} \right), $

可得$g\left( {{T_{1n}}, {T_{2n}}, {T_{3n}}} \right) = \hat \theta, g\left( {{\beta _1}, {\beta _2}, {\beta _3}} \right) = \frac{{{\beta _1} + {\beta _2}}}{{{\beta _3}}} = \theta $.

$ \frac{{\partial g}}{{\partial {\mathit{\beta }_1}}} = \frac{{\partial g}}{{\partial {\mathit{\beta }_2}}} = \frac{1}{{{\mathit{\beta }_3}}} = \frac{\theta }{{2p\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{ - \theta }}} \right)}}\frac{{\partial g}}{{\partial {\mathit{\beta }_3}}} = - \frac{{{\mathit{\beta }_{\rm{1}}}\mathit{ + }{\mathit{\beta }_{\rm{2}}}}}{{\mathit{\beta }_3^2}} = - \frac{{{\theta _1}}}{{{\mathit{\beta }_3}}} = - \frac{{{\theta ^2}}}{{2p\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{ - \theta }}} \right)}}. $

因此由引理1可得到$ \sqrt n \left( {\hat \theta-\theta } \right) = \sqrt n \left( {g\left( {{T_{1n}}, {T_{2n}}, {T_{3n}}} \right)-g\left( {{\beta _1}, {\beta _2}, {\beta _3}} \right)} \right)\mathop \to \limits^L N\left( {0, {\sigma ^2}} \right)$,其中,

$ {\sigma ^2} = \left( {\frac{{\partial g}}{{\partial {\mathit{\beta }_1}}}, \frac{{\partial g}}{{\partial {\mathit{\beta }_2}}}, \frac{{\partial g}}{{\partial {\mathit{\beta }_3}}}} \right)\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}{\left( {\frac{{\partial g}}{{\partial {\mathit{\beta }_1}}}, \frac{{\partial g}}{{\partial {\mathit{\beta }_2}}}, \frac{{\partial g}}{{\partial {\mathit{\beta }_3}}}} \right)^{\rm{T}}} = \frac{{{\theta ^2}}}{{p\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{ - \theta }}} \right)}}, $

即        $\sqrt n \left( {\hat \theta-\theta } \right)\mathop \to \limits^L N\left( {0, \frac{{{\theta ^2}}}{{p\left( {1-{{\left( {1 + {T_0}/\lambda } \right)}^{-\theta }}} \right)}}} \right). $

2 区间估计及假设检验

在实际中,对参数真值范围的研究,可以归结到参数的置信区间问题.对于本文中讨论的问题可得到如下定理.

定理3  在前面的记号下,如果${\hat \theta } $是(2) 式所给出的形状参数θ的极大似然估计,若0 < γ < 1,则θ的置信水平为1-γ的近似置信区间为

$ \left( {\hat \theta - {u_{1 - \mathit{\gamma }/2}}\sqrt {\frac{{{{\hat \theta }^2}}}{{np\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{ - \hat \theta }}} \right)}}, } \hat \theta + {u_{1 - \mathit{\gamma }/2}}\sqrt {\frac{{{{\hat \theta }^2}}}{{np\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{ - \hat \theta }}} \right)}}} } \right), $

其中uγ为标准正态分布的γ下分位数.

证明  由于$ \hat \theta \to \theta, a.s.$因此$\frac{{\sqrt {np\left( {1-{{\left( {1 + {T_0}/\lambda } \right)}^{-\hat \theta }}} \right)} \left( {\hat \theta-\theta } \right)}}{{\hat \theta }}\mathop \to \limits^L N\left( {0, 1} \right) $.

$ p\left\{ { - {u_{1 - \mathit{\gamma }/2}} < \frac{{\sqrt {np\left( {1-{{\left( {1 + {T_0}/\lambda } \right)}^{-\hat \theta }}} \right)} \left( {\hat \theta-\theta } \right)}}{{\hat \theta }} < {u_{1 - \mathit{\gamma }/2}}} \right\} \approx 1 - \mathit{\gamma, } $
$ \mathit{p}\left\{ {\hat \theta - {u_{1 - \mathit{\gamma }/2}}\frac{{\hat \theta }}{{\sqrt {np\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{ - \hat \theta }}} \right)} }} < \theta < \hat \theta + {u_{1 - \mathit{\gamma }/2}}\frac{{\hat \theta }}{{\sqrt {np\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{ - \hat \theta }}} \right)} }}} \right\} \approx 1 - \mathit{\gamma, } $

因此θ的置信水平为1-γ的近似置信区间为

$ \left( {\hat \theta - {u_{1 - \mathit{\gamma }/2}}\frac{{\hat \theta }}{{\sqrt {np\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{ - \hat \theta }}} \right)} }}, \hat \theta + {u_{1 - \mathit{\gamma }/2}}\frac{{\hat \theta }}{{\sqrt {np\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{ - \hat \theta }}} \right)} }}} \right). $

由于Lomax的分布函数为$ F\left( x \right) = 1-{\left( {1 + \frac{x}{\lambda }} \right)^{-\theta }}$,对任意p∈(0, 1),当F(xp)=p时,解得Lomax分布的p分位数为$ {x_p} = \lambda \left[{{{\left( {1-p} \right)}^{-\frac{1}{\theta }}}-1} \right]$.

因为xpθ的单调递减函数,因此当λ已知时,p分位数xp的置信水平为1-γ的近似置信区间为

$ \left( {\lambda \left( {{{\left( {1 - p} \right)}^{ - \frac{1}{{{{\hat \theta }_U}}}}} - 1} \right), \lambda \left( {{{\left( {1 - p} \right)}^{ - \frac{1}{{{{\hat \theta }_L}}}}} - 1} \right)} \right), $

其中: ${{\hat \theta }_L} = \hat \theta-{u_{1-\gamma /2}}\frac{{\hat \theta }}{{\sqrt {np\left( {1-{{\left( {1 + {T_0}/\lambda } \right)}^{ - \hat \theta }}} \right)} }};{{\hat \theta }_U} = \hat \theta + {u_{1 - \gamma /2}}\frac{{\hat \theta }}{{\sqrt {np\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{ - \hat \theta }}} \right)} }} $.

由文献[4]知,Lomax分布的失效率函数为$H\left( x \right) = \frac{\theta }{{\lambda + x}} $,可靠度函数为$ R\left( x \right) = {\left( {1 + \frac{x}{\lambda }} \right)^{-\theta }}$.且$\frac{\theta }{{\lambda + x}} $θ的单调递增函数,$ {\left( {1 + \frac{x}{\lambda }} \right)^{-\theta }}$θ的单调递减函数.由形状参数θ的置信区间可得到失效率的置信水平为1-γ的近似置信区间为$\left( {\frac{{{{\hat \theta }_L}}}{{\lambda + x}}, \frac{{{{\hat \theta }_U}}}{{\lambda + x}}} \right) $.

同样可得到可靠度的置信水平为1-γ的近似置信区间为$\left( {{{\left( {1 + \frac{x}{\lambda }} \right)}^{-{{\hat \theta }_U}}}, {{\left( {1 + \frac{x}{\lambda }} \right)}^{-{{\hat \theta }_L}}}} \right) $.

1) 对于假设检验问题H0:θ=θ0↔H1:θθ0,其中θ0已知,当H0成立时$ \frac{{\sqrt {np\left( {1-{{\left( {1 + {T_0}/\lambda } \right)}^{-\hat \theta }}} \right)} \left( {\hat \theta-{\theta _0}} \right)}}{{\hat \theta }}\mathop \to \limits^L N\left( {0, 1} \right)$,对于给定的显著性水平γ(0 < γ < 1),检验的拒绝域为

$ {\mathit{\boldsymbol{W}}_1} = \left\{ {\left( {{\mathit{Z}_i}, {\delta _i}, {\alpha _i}} \right), i = 1, 2, \cdots, n} ||\frac{{\sqrt {np\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{ - \hat \theta }}} \right)} \left( {\hat \theta - {\theta _0}} \right)}}{{\hat \theta }}| \ge {u_{1 - \mathit{\gamma }/2}} \right\}. $

2) 对于假设检验问题H0:θ>θ0↔H1:θ≤θ0.同理可得,对于给定的显著性水平γ(0 < γ < 1),检验的拒绝域为${\pmb{W}_2} = \left\{ {\left( {{Z_i}, {\delta _i}, {\alpha _i}} \right), i = 1, 2, \cdots, n|\frac{{\sqrt {np\left( {1-{{\left( {1 + {T_0}/\lambda } \right)}^{-\hat \theta }}} \right)} \left( {\hat \theta-{\theta _0}} \right)}}{{\hat \theta }} \le {u_\gamma }} \right\} $.

3) 对于假设检验问题H0:θ < θ0↔H1:θθ0.同理可得,对于给定的显著性水平γ(0 < γ < 1),检验的拒绝域为

$ {\mathit{\boldsymbol{W}}_3} = \left\{ {\left( {{\mathit{Z}_i}, {\delta _i}, {\alpha _i}} \right), i = 1, 2, \cdots, n} | {\frac{{\sqrt {np\left( {1 - {{\left( {1 + {T_0}/\lambda } \right)}^{ - \hat \theta }}} \right)} \left( {\hat \theta - {\theta _0}} \right)}}{{\hat \theta }}} \ge {u_{1 - \mathit{\gamma }}} \right\}. $

根据定理2可以得到两个独立Lomax分布总体形状参数之差的区间估计和假设检验问题.

3 随机模拟

λ分别取1.2和2时,在形状参数θ取不同真值的情况下,通过随机模拟的方法,产生一个服从Lomax分布(1) 的样本,且样本容量n=100.取缺失概率1-P=0.1,置信水平1-γ=0.95,对于给定截尾时间T0,利用上述样本可以得到参数θ的估计,以上过程重复1 000次,可以得到参数估计的均值、均方误差、置信区间的上下限均值及覆盖率,模拟结果见表 1.对形状参数的估计都很接近参数真值,并且均方误差较小.θ的真值介于下限均值与上限均值之间,覆盖率很接近近似置信水平0.95.

表 1 参数估计的均值、均方误差(MSE)、置信区间的上下限均值及覆盖率 Table 1 Mean value and mean square error (MSE) of parameter estimation, the upper and lower average and coverage of the confidence interval
参考文献
[1]
李开灿, 刘大飞, 林存津. Lomax分布极大似然估计的两点研究[J]. 数学杂志, 2016, 36(1): 207-213. (0)
[2]
龙兵. 两参数Lomax分布中参数的区间估计和假设检验[J]. 江西师范大学学报(自然科学版), 2014, 38(2): 176-179. (0)
[3]
龙兵. 缺失数据样本下Lomax分布尺度参数的估计[J]. 统计与决策, 2014, 19: 21-23. (0)
[4]
龙兵, 张明波. 定数截尾下Lomax分布失效率和可靠度的贝叶斯估计[J]. 华南师范大学学报(自然科学版), 2016, 48(2): 102-106. (0)
[5]
肖小英, 任海平. 熵损失函数下两参数Lomax分布形状参数的Bayes估计[J]. 数学的实践与认识, 2010, 40(5): 227-230. (0)
[6]
周明元. 对称熵损失函数下两参数Lomax分布形状参数的Bayes估计[J]. 统计与决策, 2010(17): 8-10. (0)
[7]
姚惠, 谢林. 不同损失下Lomax分布形状参数的Bayes估计[J]. 数学杂志, 2011, 31(6): 1131-1134. (0)
[8]
姚惠. Linex损失下Lomax分布形状参数的Bayes估计[J]. 统计与决策, 2011(16): 173-175. (0)
[9]
赵志文, 王思洋, 王瑞庭, 等. 定时截尾下具有部分缺失数据两个指数总体参数的估计与检验[J]. 吉林大学学报(理学版), 2009, 47(1): 26-30. (0)
[10]
龙兵, 王秋节, 习长新. 具有部分缺失数据的两个Pareto分布总体参数的估计和检验[J]. 贵州大学学报(自然科学版), 2016, 33(1): 9-12. (0)
[11]
何朝兵. 右删失左截断数据下离散威布尔分布的参数估计[J]. 郑州大学学报(理学版), 2016, 48(2): 18-23. (0)
[12]
赵志文, 赖民, 宋立新, 等. 具有部分缺失数据的两个对数正态分布总体参数的估计与检验[J]. 统计与决策, 2009(20): 7-9. (0)