世界范围内,雌雄异株植物约有14 000余种,是陆地生态系统十分重要的组成部分[1],对维持物种多样性和生态系统的稳定性具有重要的作用,对人类也具有巨大的生态服务和经济价值[2]。在漫长的进化历程中,雌、雄植株在形态、生理、生殖格局、空间分布和资源配置等方面产生了明显的差异,对环境变化也衍生了不同的响应机制。在多数情况下,雌株将占有更多的生殖分配,以便于产生花朵和果实,雄株为产生花粉,对于氮源的需求大于雌性,进而导致雌雄株之间的资源需求差异[3]。随着人类干扰和全球环境恶化,雌雄异株植物在环境胁迫下的生长状况、生殖分配、空间分布及演变规律引起了越来越多的关注。
高等植物雌雄个体对环境变化的差异响应研究始于1970年代。目前,在形态、生理和分子等方面,围绕着温度[4-5]、光照[6]、营养[7]、干旱[8]、盐分[9]等环境因素的变化开展了大量的性别差异响应及其机制的研究工作。为探究雌雄异株植物在全球环境变化的背景下的适应机制,促进个体、种群、群落和生态系统等多个层次和尺度上不同性别植物对环境因子的响应机制及模型的研究,本文结合几十年来的研究成果,综合国内外关于干旱、盐胁迫、重金属污染、营养以及全球变化等环境胁迫下雌雄异株植物的响应差异的研究进展,阐述雌雄异株植物的响应特征规律和研究前景,以期确立雌雄异株植物在物种进化和生态系统中的作用和地位,更好地预测未来多变环境下种群结构及演变趋势,为雌雄异株植物的保护和利用提供一定的理论基础。
1 环境胁迫下雌雄异株植物的差异响应特征 1.1 雌雄异株植物对干旱胁迫的响应特征干旱是影响植物生存和生长的最有害的非生物胁迫因素之一,对于干旱胁迫下雌雄异株植物在水分利用效率、抗旱性等方面的差异响应还存在争议,无论是草本还是木本植物,雌雄植株一旦受到干旱胁迫,它们将在生理(干物质积累、净光合速率、蒸腾速率、气体交换能力以及抗氧化能力)和形态(茎分支、不定根和叶面积等)上呈现出显著差异,并影响其种群结构及性别比例。雌雄植株对干旱胁迫的生理响应差异,目前主要归因于雌雄植株不同的繁殖成本及生存策略,亦或是由于干旱胁迫导致雌雄植株在分子水平的差异响应而引起的[9-11]。已有报道显示,在干旱胁迫下,雌雄异株植物在生理和分子水平表现出明显差异,雄株参与电子传递、光系统稳定、氧化还原稳态和应激反应方面的蛋白数量[4, 10, 12]与调控相关基因明显高于雌株[13]。虽然多数物种中雄株具有更强的适应能力,但在葎草(Humulus scandens)[14]、银杏(Ginkgo biloba L.)[15]、中华沙棘(Hippophae rhamnoides sinensis)和俄罗斯沙棘(Hippophae rhamnoides)[16]等物种中雌株表现出更强的保水能力。水分胁迫对于雌雄异株的影响不仅体现在生理和分子水平,还影响部分雌雄异株植物的性别比例,出现明显的性别偏倚[17]。总之,雌雄异株植物同域分布时,雄株节水型生存策略在自身受益的同时,可改善雌株的水分条件,邻近分布的雌雄植株通过适应互作关系,影响雌雄异株种群的动态演变[18],进而影响种群结构与动态。
1.2 雌雄异株植物对盐胁迫的响应特征盐度是许多陆地生态系统中制约植物生长发育的主要非生物环境胁迫因子,与干旱相似,可导致植物生理干燥和渗透胁迫,影响植物的种群结构和性别比例。此外,雌雄异株植物对于盐胁迫呈现明显种间差异。已有报道表明,在多数物种中,雄株比雌株更能适应盐胁迫,例如,美洲黑杨(Populus deltoides)和青杨雄株通过提高渗透调节能力、水分利用效率和抗氧化酶活性适应盐胁迫[19-20];分子水平数据表明,滇杨(Populus yunnanensis Dode)雌、雄株在盐胁迫下表现出明显的差异响应,雌株的代谢活动受到明显的抑制,相关基因下调[21]。在部分雌雄异株植物中,雌株比雄株更能适应盐胁迫,例如,在盐胁迫条件下,银杏[22]、葎草[23]、苋麻(Amaranthus cannabinus)[24]等物种雌株的光合速率、水分利用效率的和抗氧化酶活性高于雄株,并具有更强的抗盐能力和性别偏倚。
1.3 雌雄异株植物对营养胁迫的响应特征土壤中的养分水平影响植物的形态、生理和分子,如加速植物衰老、降低光合速率、增加活性氧含量等[25-27],进而影响植物的生长、性别比例和空间分布。由于雌、雄株的营养需求不同,导致其雌、雄株面临的选择压力不同,雌株在繁殖中投入更高,在其生活史中变现出更强的补偿机制[28],在资源丰富的环境中,性别比例往往偏向于雌株[29],在资源匮乏的环境中,雌株生存能力较低,性别比例往往偏向于雄株[2, 30-31]。
通常情况下,雌株具有更高的氮素利用效率。然而,当在胁迫或非最适条件下生长时,雌株的氮素利用率比雄性下降得更多[32]。已有研究表明,在高氮胁迫下、高UV-B辐射和低土壤养分条件下,雌株生长明显大于雄株[33-34],雄株对于胁迫的环境的敏感性和耐受性较雌株差,防御能力较低[35]。而在氮沉降与CO2富集协同影响下,雌性受到的影响更大,生长和光合效率均受限制,具有明显的雄性偏倚[34]。在氮、磷缺乏下,雌、雄株在光合水平[36]、转录水平、蛋白水平[37]等表现出明显的性别差异,雌株具有较高的抗氧化酶活力和抗逆性,对氮、磷缺乏更为敏感[37],而雄株在营养生长上投入较多,尤其是地上生物量的积累[38]。
1.4 雌雄异株植物对重金属胁迫的响应特征随着科学技术的不断发展,工业化与城市化进程的日益加剧,引发了日益严重的重金属污染问题。由于重金属污染毒性大、潜伏性和富集性强,在土壤中不易移动且难于被分解,已成为全球普遍关注的问题。虽然适当浓度的重金属对植物的必不可少的,但是浓度过高则会抑制植物的生长发育。
1.4.1 雌雄异株植物对单一重金属胁迫的响应特征本文综合前人研究,发现单一重金属介导胁迫下,雌、雄异株植物在生理和分子水平呈现明显的性别和种间差异响应特征。例如,在单独铝胁迫下,青杨雄株的可溶性蛋白、抗氧化酶活力、叶绿素含量和光合速率均高于雌性,具有更强的抗逆性[39];单独铁胁迫下,青杨雌、雄株生长、光合速率、叶绿素含量和组织中铁浓度均减少,雄性具有明显的抗性,蛋白组数据显示,参与光合作用、碳水化合物、能量代谢和基因表达调控的蛋白组下调,参与氨基酸代谢和应激反应的蛋白质上调,并具有明显的性别响应差异,缺铁对于雌株影响更大[40];单独铝胁迫下,青杨雄株幼苗的气孔导度、抗氧化保护酶活性和生物量等均高于雌株[39];单独铅胁迫下,桑树(Morus alba)雌、雄株幼苗呈现显著差异,雄株各项生理指标和生物量的积累均高于雌株[41];在单独锌胁迫下,会抑制滇杨雌雄株光合作用受限,进而影响其生长,雄性具有更强的富集锌的能力,并通过脯氨酸和非蛋白巯基的合成提高对锌的防御能力[42];在单独镉胁迫下,滇杨、美洲黑杨雌株适应能力较弱,光合效率和抗氧化酶活力明显降低,雄株对于镉的富集能力更强,并且通过非蛋白巯基和游离氨基酸积累脱毒,雄株表现出更高的耐受性和抗逆性[33, 43];在单独铜胁迫下,白玉草(Silene latifolia)雌株具有更好的适应能力,种子产生数量随铜浓度的增加而减少,随镉浓度的增加而增加[44]。
1.4.2 雌雄异株植物对复合重金属胁迫的响应特征在铅、锌共同影响下,桑树雌株与雄株生理指标和生物量积累比单独铅胁迫下略有升高,并且雄株高于雌株,锌在一定程度上可缓解铅胁迫带来的负面影响[45];铅、锰等重金属胁迫对于青杨雌雄株的生长具有抑制作用,但是雄株具有更强的适应能力,干旱条件增加了青杨对于铅的敏感性,特别是雌株[46-47],丛枝菌根真菌接种情况下,提升了青杨雌雄株根部对铅的吸收和积累,并且雌株增幅大于雄株[48];在铜、铅交互胁迫影响下,滇杨雌、雄株各项生理、生化指标均受到抑制,并产生显著的性别响应差异,雄株通过提高抗氧化酶活性以及提高非蛋白巯基、谷胱甘肽等物质降低重金属损害,雌株对重金属污染更加敏感,各项指标均受抑制,更易受到重金属污染的损伤[49]。
1.5 雌雄异株植物对全球变化的响应特征由于全球范围内工业化进程加速[50],引发了一系列的全球变化,例如大气CO2浓度增加、全球变暖和紫外辐射增强等。由于雌雄异株植物分株表达,使其更易受到全球变化的影响,导致其性别比例失调和繁殖成功率降低[51],进而导致种群结构发生变化[52]。
1.5.1 雌雄异株植物对温度变化的响应特征温度是影响植物生长、繁殖甚至生存的重要环境因素之一。植物对于温度变化的适应是一个动态过程,植物一方面通过改变机体的代谢活动去适应环境变化[53];另一方面改变体内物质合成(脂类物质、渗透调节物质等)适应温度变化[54-55]。已有研究表明,当温度发生变化后,雌雄异株植物的雌雄个体在形态、细胞结构、生理生化以及耐冻性形成等方面都表现出不同的响应[16, 56]。例如,在温度胁迫下,葎草雌、雄株间通过调整和改变生长策略,雄株先于雌株花芽分化,而雌株则通过延长营养生长期、提高光合效率为生殖成功提供保障[57],青杨雌株在温度升高2和4 ℃时生物量明显增加,雌株累积生物量高于雄株[58],且青杨雌株的年轮最大密度和晚材平均密度高于雄株[59];此外在高温胁迫下,蒿柳(Salix viminalis)雄株具备更强的光保护能力、碳同化能力和过氧化酶活性,具有更强的耐热性[60-61];在CO2浓度和温度升高的共同作用下,北极柳和青杨雄株的生物量明显高于雌株,但发育中的雌株叶片比雄株叶片具有更强的光合效率[62-63]。低温胁迫下,青杨和铁东青雌、雄株的相对电导率、脯氨酸含量、可溶性蛋白和氧化酶活性存在显著的性别差异,雄株具有更好的叶绿体结构和更完整的膜结构,表现出对寒冷胁迫更好的耐受性[64]。
1.5.2 雌雄异株植物对CO2加富的响应特征进入21世纪以来,大气中的CO2浓度不断升高,对于雌雄异株植物产生不同的影响,并具有明显的种间差异。在当前大气CO2浓度下,植物的雌、雄个体表现出明显的生理差异,即雄株比雌株具有更高的光合速率[65-66]。而当大气CO2浓度倍增时,植物的雌雄个体在生理、生殖以及种子萌发上都产生了不同的响应。CO2浓度升高对雌雄株光合速率、种子萌发和性别比例产生影响,与雌株相比,雄株在CO2浓度倍增下的净光合速率显著提高,比雌株高25%[65],雄株产生花朵的数量是雌株产果数量的16倍,但雌株获得更多的碳分配,后代性比偏向于雌性[32, 65],雄株比雌株的净光合和生物量积累高[67]。大气CO2的增加还将减少叶片活性氧(ROS)的积累,从而导致植物抗氧化防御能力的降低[68-70],雄株愈创木酚氧化物酶(POD)活性降低,雌株含水量下降,叶片质量增加[71-72]。
1.5.3 雌雄异株植物对UV-B辐射增强的响应特征日益增强的UV-B辐射强度,不仅影响植物的生理功能[73-74],也影响植物的基因表达调控[72, 75]。在UV-B辐射增强影响下,欧洲山杨[6, 76]、滇杨[49]、青杨[35, 77]、桑树[5]等物种在生理水平表现出明显的性别差异响应,与雌株相比,雄株基径和叶片氮含量显著增高,叶绿素a/b、ABA含量、UV-B吸收物质、叶面积和干物质积累显著降低,雄株具有更高的光合速率和适应能力具有更有效的抗氧化系统和更高的花青素含量,以减轻UV-B辐射带来的不利影响,从而拥有对UV-B辐射更大的抗性。雌雄植物对于UV-B辐射增强的响应不仅表现在生理水平,在分子水平也产生差异响应,许多参与氨基酸代谢的差异表达基因主要在雄株中上调,在雌株中下调[78],蛋白组数据显示,性别差异响应的蛋白主要涉及氨基酸代谢、应激反应、光合作用、氧化还原反应和转录后修饰,雄株蛋白变化幅度更大,适应机制更为复杂[79]。随着海拔增高UV-B辐射增强,雌雄异株植物也表现一定的性别偏倚,欧洲山杨和沙棘雌、雄株的叶片长度和面积均随海拔高度增加而减小,雄株的叶片大小、面积、厚度、叶绿素和叶柄长度均高于雌性,雄株具有更好的环境适应能力,随海拔升高表现出雄性偏倚[80-81]。
2 研究前景大型海藻不仅是海岸带生态系统的重要组成部分,也是许多海藻生态系统中重要的优势物种。由于人类活动的干扰和全球环境变化的双重影响,这些大型海藻资源量严重衰减,有的甚至趋于濒危和灭绝。因此,开展大型海藻的研究有助于指导和促进海藻场修复技术的开发与应用,对保护海岸带生态系统尤其是海藻生态系统的健康提供依据。现阶段,围绕大型海藻所开展的研究工作虽然很多,但都没有将雌株和雄株区分开来分别进行研究。因此,这些工作都不能准确地反映大型海藻(尤其是具有雌雄异株特性的大型海藻)对环境变化响应的本质。为更好的解析大型海藻的对环境变化的响应本质,许多研究亟需展开。
2.1 雌雄异株海藻的性别决定因素探究高等植物区分雌雄进行研究开展的较早,其中非常重要的原因是由于在高等植物方便进行性别区分,利用进行后期研究。学者对于植物性别决定和调控方面的研究较多,涉及形态[82-84]、生理[85]、细胞[86]、分子[87-88]和调控机制[89]等方面。但在大型海藻中,针对于雌雄藻株的性别调控和早期分化尚未开展,因此结合高等植物的研究成果,筛选性别相关基因和位点,掌握大型海藻的性别分化机制和性别决定位点,对于具有雌雄异株特性的大型海藻意义重大。
2.2 雌雄异株海藻对海洋酸化的响应特征研究自工业革命以来,化石燃料的加剧使用,森林砍伐,水泥生产等人为活动导致大气中二氧化碳浓度显著升,全球CO2浓度的平均水平已从280 ppmv增至391 ppmv,海洋作为大气中CO2的汇,吸收了人为排放CO2的30%[90]。海水中游离的CO2虽不足1%,但由于大型海藻可直接利用海水中的CO2,导致大气中的CO2向海水中的融入量增加。海洋酸化改变着海水的化学成分和海洋环境,对海洋生态系统产生深远影响。大型海藻是海洋生态系统中对海洋酸化直接的响应者,更易受到海洋酸化的影响,将雌株和雄株区分开来,研究它们各自对海洋酸化的响应特征及差异,具有重要的科学意义,也是该领域研究不断深入后亟需开展的工作。
2.3 雌雄异株海藻对UV-B辐射增强的响应特征研究臭氧层减薄是当今最引人注目的全球变化现象之一,而且全球性的臭氧层侵蚀和破坏仍在日渐加重。臭氧层的减薄使得到达地面的紫外线,尤其是对生物具严重损伤作用的UV-B的辐射增强,从而对全球产生明显的环境生态学效应。大型海藻是海洋生态系统中对UV-B辐射增强最直接的响应者,更易受到UV-B的影响。由于长期的进化历程,雌株和雄株藻体在外部形态、生长发育、繁殖特性以及生理机制等方面都已存在明显的本质差异,故二者对外界环境变化的反应也各不相同。因此,无论是从宏观层面还是从微观层面所开展的这些工作,都不能真实和准确地反映大型海藻(尤其是具有雌雄异株特性的大型海藻)对环境变化响应的本质。将雌株和雄株区分开来,研究它们各自对UV-B辐射增强的响应特征及差异,并揭示其内在的分子机制,具有重要的科学意义,也是该领域研究不断深入后亟需开展的工作。
[1] |
Renner S S, Ricklefs R E. Dioecy and its correlates in the flowering plants[J]. American Journal of Botany, 1995, 82(5): 596-606.
( ![]() |
[2] |
陈娟, 李春阳. 环境胁迫下雌雄异株植物的性别响应差异及竞争关系[J]. 应用与环境生物学报, 2014, 20(4): 743-750. Chen J, Li C Y. Sex-specific responses to environmental stresses and sexual competition of dioecious plants[J]. Chin J Appl Environ Biol, 2014, 20(4): 743-750. ( ![]() |
[3] |
Barrett S C, Hough J. Sexual dimorphism in flowering plants[J]. Journal of Experimental Botany, 2012, 64(1): 67-82.
( ![]() |
[4] |
Xu X, Peng G, Wu C, et al. Drought inhibits photosynthetic capacity more in females than in males of Populus cathayana[J]. Tree Physiology, 2008, 28(11): 1751-1759.
( ![]() |
[5] |
Chen M, Huang Y, Liu G, et al. Effects of enhanced UV-B radiation on morphology, physiology, biomass, leaf anatomy and ultrastructure in male and female mulberry (Morus alba) saplings[J]. Environmental Experimental Botany, 2016(129): 85-93.
( ![]() |
[6] |
Strømme C B, Julkunen T R, Olsen J E, et al. The dioecious Populus tremula displays interactive effects of temperature and ultraviolet-B along a natural gradient[J]. Environmental Experimental Botany, 2018(146): 13-26.
( ![]() |
[7] |
Mizuki I, Ishida K, Chiwa M, et al. Nutrient deficiency promotes male-biased apparent sex ratios at the ramet level in the dioecious plant Myrica gale var. tomentosa in oligotrophic environments in bogs[J]. Journal of Plant Research, 2018, 1-13.
( ![]() |
[8] |
Lu Y, Miao X, Song Q, et al. Morphological and ecophysiological plasticity in dioecious plant Populus tomentosa under drought and alkaline stresses[J]. Photosynthetica, 2018, 56(4): 1353-1364.
( ![]() |
[9] |
Chen F, Zhang S, Jiang H, et al. Comparative proteomics analysis of salt response reveals sex-related photosynthetic inhibition by salinity in Populus cathayana cuttings[J]. Journal of Proteome Research, 2011, 10(9): 3944-3958.
( ![]() |
[10] |
Zhang S, Chen F, Peng S, et al. Comparative physiological, ultrastructural and proteomic analyses reveal sexual differences in the responses of Populus cathayana under drought stress[J]. Proteomics, 2010, 10(14): 2661-2677.
( ![]() |
[11] |
杨杰.不同性别中华山蓼(蓼科)植株的生理特征及其对干旱胁迫响应研究[D].昆明: 云南师范大学, 2015. Yang J. Physiological Traits and Responses to Drought Stress Among Sex Morphs of Oxyria sinensis(Polygonaceae), 2015. ( ![]() |
[12] |
李德颖. 野牛草雌雄单性植株对水分胁迫反应的差异[J]. 园艺学报, 1996(1): 62-66. Li D Y. Different response to water deficit in male and female plants of buffalo grass[J]. Acta Horticulturae Sinica, 1996(1): 62-66. ( ![]() |
[13] |
Peng S, Jiang H, Zhang S, et al. Transcriptional profiling reveals sexual differences of the leaf transcriptomes in response to drought stress in Populus yunnanensis[J]. Tree Physiology, 2012, 32(12): 1541-1555.
( ![]() |
[14] |
刘金平, 段婧. 营养生长期雌雄葎草表观性状对水分胁迫响应的性别差异[J]. 草业学报, 2013, 22(2): 243-249. Liu J P, Duan J. Humulus scandens gender differences in response to water stress in the vegetative growth stage[J]. Acta Prataculturae Sinica, 2013, 22(2): 243-249. ( ![]() |
[15] |
何梅, 施大伟, 胡玉安, 等. 干旱胁迫下银杏雌雄植株的生长及内源激素含量的差异[J]. 江西农业大学学报, 2017(6): 104-112. He M, Shi D W, Hu Y A, et al. Gender differences in the growth and endogenous hormone contents of male and female ginkgo biloba under drought stress[J]. Acta Agriculturae Universitatis Jiangxiensis(Natural Sciences Edition), 2017(6): 104-112. ( ![]() |
[16] |
刘瑞香, 杨劼, 高丽. 中国沙棘和俄罗斯沙棘叶片在不同土壤水分条件下脯氨酸, 可溶性糖及内源激素含量的变化[J]. 水土保持学报, 2005, 19(3): 148-151. Liu R X, Yang J, Gao L. Changes in contents of proline, soluble saccharin and endogenous hormone in leaves of chinese seabuckthorn and russian seabuckthorn under different soil water content[J]. Journal of Soil and Water Conservation, 2005, 19(3): 148-151. ( ![]() |
[17] |
Soldaat L L, Lorenz H, Trefflich A. The effect of drought stress on the sex ratio variation of Silene otites[J]. Folia Geobotanica, 2000, 35(2): 203-210.
( ![]() |
[18] |
陈娟, 李春阳. 漫谈雌雄异株植物[J]. 生命世界, 2015(11): 40-45. Chen J, Li C Y. On dioecious plants[J]. Life World, 2015(11): 40-45. ( ![]() |
[19] |
Chen F, Chen L, Zhao H, et al. Sex-specific responses and tolerances of Populus cathayana to salinity[J]. Physiologia Plantarum, 2010, 140(2): 163-173.
( ![]() |
[20] |
Li Y, Duan B, Chen J, et al. Males exhibit competitive advantages over females of Populus deltoides under salinity stress[J]. Tree Physiology, 2016, 36(12): 1573-1584.
( ![]() |
[21] |
Jiang H, Peng S, Zhang S, et al. Transcriptional profiling analysis in Populus yunnanensis provides insights into molecular mechanisms of sexual differences in salinity tolerance[J]. Journal of Experimental Botany, 2012, 63(10): 3709-3726.
( ![]() |
[22] |
蒋雪梅, 胡进耀, 戚文华, 等. 银杏幼苗雌雄株对盐胁迫响应的差别[J]. 植物分类与资源学报, 2009, 31(5): 447-453. Jiang X M, Hu J Y, Qi W H, et al. Different physiological responses of male and female Ginkgo biloba (Ginkgoaceae) seedlings to salt stress[J]. Acta Botanica Yunnanica, 2009, 31(5): 447-453. ( ![]() |
[23] |
王碧霞, 黎云祥. 葎草幼苗对盐胁迫响应的性别差异[J]. 草业科学, 2017, 34(7): 1487-1495. Wang B X, Li Y X. Gender differences of Humulus scandens seedlings in response to NaCl stress[J]. Pratacultural Science, 2017, 34(7): 1487-1495. ( ![]() |
[24] |
Bram M R, Quinn J A. Sex expression, sex-specific traits, and the effects of salinity on growth and reproduction of Amaranthus cannabinus (Amaranthaceae), a dioecious annual[J]. American Journal of Botany, 2000, 87(11): 1609-1618.
( ![]() |
[25] |
Bram M R, Quinn J A. Sex expression, sex-specific traits, and the effects of salinity on growth and reproduction of Amaranthus cannabinus (Amaranthaceae), a dioecious annual[J]. Tree Physiology, 2006, 26(11): 1477-1486.
( ![]() |
[26] |
Liang C, Tian J, Liao H. Proteomics dissection of plant responses to mineral nutrient deficiency[J]. Proteomics, 2013, 13(3-4): 624-636.
( ![]() |
[27] |
Marler R J, Stromberg J C, Patten D T. Growth response of Populus fremontii, Salix gooddingii, and Tamarix ramosissima seedlings under different nitrogen and phosphorus concentrations[J]. Journal of Arid Environments, 2001, 49(1): 133-146.
( ![]() |
[28] |
Delph L F, Herlihy C R. Sexual, fecundity, and viability selection on flower size and number in a sexually dimorphic plant[J]. Evolution, 2012, 66(4): 1154-1166.
( ![]() |
[29] |
Ward J, Dawson T, Ehleringer J. Responses of Acer negundo genders to interannual differences in water availability determined from carbon isotope ratios of tree ring cellulose[J]. Tree Physiology, 2002, 22(5): 339-346.
( ![]() |
[30] |
Dawson T E, Ehleringer J R. Gender-specific physiology, carbon isotope discrimination, and habitat distribution in boxelder, Acer negundo[J]. Ecology, 1993, 74(3): 798-815.
( ![]() |
[31] |
Li H, Li T, Tu B, et al. Host species shapes the co-occurrence patterns rather than diversity of stomach bacterial communities in pikas[J]. Applied Microbiology & Biotechnology, 2017, 101(13): 1-11.
( ![]() |
[32] |
Wang X, Griffin K L. Sex-specific physiological and growth responses to elevated atmospheric CO2 in Silene latifolia Poiret[J]. Global Change Biology, 2003, 9(4): 612-618.
( ![]() |
[33] |
Chen L, Han Y, Jiang H, et al. Nitrogen nutrient status induces sexual differences in responses to cadmium in Populus yunnanensis[J]. Journal of Proteome Research, 2011, 62(14): 5037-5050.
( ![]() |
[34] |
Zhao H, Xu X, Zhang Y, et al. Nitrogen deposition limits photosynthetic response to elevated CO2 differentially in a dioecious species[J]. Oecologia, 2011, 165(1): 41-54.
( ![]() |
[35] |
Feng L, Jiang H, Zhang Y, et al. Sexual differences in defensive and protective mechanisms of Populus cathayana exposed to high UV-B radiation and low soil nutrient status[J]. Physiologia plantarum, 2014, 151(4): 434-445.
( ![]() |
[36] |
Zhang S, Jiang H, Zhao H, et al. Sexually different physiological responses of Populus cathayana to nitrogen and phosphorus deficiencies[J]. Tree Physiology, 2014, 34(4): 343-354.
( ![]() |
[37] |
Zhang S, Zhou R, Zhao H, et al. iTRAQ-based quantitative proteomic analysis gives insight into sexually different metabolic processes of poplars under nitrogen and phosphorus deficiencies[J]. Proteomics, 2016, 16(4): 614-628.
( ![]() |
[38] |
Randriamanana T R, Nybakken L, Lavola A, et al. Sex-related differences in growth and carbon allocation to defence in Populus tremula as explained by current plant defence theories[J]. Tree Physiology, 2014, 34(5): 471-487.
( ![]() |
[39] |
李俊钰, 胥晓, 杨鹏, 等. 铝胁迫对青杨雌雄幼苗生理生态特征的影响[J]. 应用生态学报, 2012, 23(1): 45-50. Li J Y, Xu X, Yang P, et al. Effects of aluminum stress on ecophysiological characteristics of male and female Populus cathayana seedlings[J]. Chinese Journal of Applied Ecology, 2012, 23(1): 45-50. ( ![]() |
[40] |
Zhang S, Zhang Y, Cao Y, et al. Quantitative proteomic analysis reveals Populus cathayana females are more sensitive and respond more sophisticatedly to iron deficiency than males[J]. Journal of Proteome Research, 2016, 15(3): 840-850.
( ![]() |
[41] |
秦芳, 胥晓, 刘刚, 等. 桑树(Morus alba)幼苗对铅污染的生理耐性和积累能力的性别差异[J]. 环境科学学报, 2014, 34(10): 2615-2623. QIN F, XU X, LIU G, et al. Sexual differences in physiological tolerance and accumulation capacity against lead pollution in Morus alba seedlings[J]. Acta Scientiae Circumstantiae, 2014, 34(10): 2615-2623. ( ![]() |
[42] |
Jiang H, Korpelainen H, Li C. Populus yunnanensis males adopt more efficient protective strategies than females to cope with excess zinc and acid rain[J]. Chemosphere, 2013, 91(8): 1213-1220.
( ![]() |
[43] |
谭灵杰.镉污染和盐渍化对美洲黑杨雌雄植株生长和生理的影响[D].雅安: 四川农业大学, 2017. Tan L J. Effect of Cadmium Pollution and Salinization on the Growth and Physiology of Male and Female Populus deltoides[D]. Yaan: Sichuan Agricultural University, 2017. ( ![]() |
[44] |
Vilas J S, Campoy J, Retuerto R. Sex and heavy metals:Study of sexual dimorphism in response to soil pollution[J]. Environmental Experimental Botany, 2016(126): 68-75.
( ![]() |
[45] |
秦芳.锌对铅胁迫下桑树雌雄幼苗生长的影响[D].南充: 西华师范大学, 2015. Qin F. Effects of Zinc on the Growth of Female and Male Morus alba Seedlings Under Lead Stress[D]. Nanchong: China West Normal University, 2015. ( ![]() |
[46] |
Han Y, Wang L, Zhang X, et al. Sexual differences in photosynthetic activity, ultrastructure and phytoremediation potential of Populus cathayana exposed to lead and drought[J]. Tree Physiology, 2013, 33(10): 1043-1060.
( ![]() |
[47] |
Chen J, Duan B, Xu G, et al. Sexual competition affects biomass partitioning, carbon-nutrient balance, Cd allocation and ultrastructure of Populus cathayana females and males exposed to Cd stress[J]. Tree Physiology, 2016, 36(11): 1353-1368.
( ![]() |
[48] |
胡相伟.从枝菌根对受铅胁迫的雌雄青杨(Populus cathayana)生理生化特性的影响[D].雅安: 四川农业大学, 2016. Hu X W. Effect of Arbuscular Mycorrhizal Fungi on Sex-Specific Responses of Physiological and Biochemical Characteristics of Populus cathayana Under Pb Pollution[D]. Yaan: Sichuan Agricultural University, 2016. ( ![]() |
[49] |
伍柳燃.滇杨雌雄植株对增强UV-B辐射和重金属铅, 铜胁迫的生理生化响应差异[D].成都: 成都理工大学, 2017. Wu L R. Different Ecophysiological Responses Between Females and Males of Populus yunnanenses in Enhanced UV-B Radiation, Pb and Cu Stress[D]. Chengdu: Chengdu University of Technology, 2017. ( ![]() |
[50] |
Mckenzie R L, Aucamp P J, Bais A F, et al. Ozone depletion and climate change:Impacts on UV radiation[J]. Photochemical & Photobiological Sciences, 2014, 14(1): 19-52.
( ![]() |
[51] |
Hultine K, Bush S, West A, et al. Gender-specific patterns of aboveground allocation, canopy conductance and water use in a dominant riparian tree species:Acer negundo[J]. Tree Physiology, 2008, 28(9): 1383-1394.
( ![]() |
[52] |
Yu L, Lu J. Does landscape fragmentation influence sex ratio of dioecious plants? A case study of Pistacia chinensis in the Thousand-Island Lake region of China[J]. PLoS One, 2011, 6(8): e22903.
( ![]() |
[53] |
Schwender J, Ohlrogge J, Shachar-Hill Y. Understanding flux in plant metabolic networks[J]. Current Opinion in Plant Biology, 2004, 7(3): 309-317.
( ![]() |
[54] |
Yadav S K. Cold stress tolerance mechanisms in plants. A review[J]. Agronomy for sustainable development, 2010, 30(3): 515-527.
( ![]() |
[55] |
Fernie A R, Geigenberger P, Stitt M. Flux an important, but neglected, component of functional genomics[J]. Current opinion in plant biology, 2005, 8(2): 174-182.
( ![]() |
[56] |
Li C, Yang Y, Junttila O, et al. Sexual differences in cold acclimation and freezing tolerance development in sea buckthorn (Hippophae rhamnoides L.) ecotypes[J]. Plant Science, 2005, 168(5): 1365-1370.
( ![]() |
[57] |
郭海燕, 段婧, 刘金平, 等. 温度对雌雄葎草花芽分化和色素含量及光合作用影响的性别差异[J]. 草业学报, 2017, 26(8): 104-112. Guo H Y, Duan J, Liu J P, et al. Effects of temperature on flower bud differentiation, pigment contents, and photosynthesis of male and female Humulus scandens[J]. Acta Prataculturae Sinica, 2017, 26(8): 104-112. ( ![]() |
[58] |
Xu X, Peng G, Wu C, et al. Global warming induces female cuttings of Populus cathayana to allocate more biomass, C and N to aboveground organs than do male cuttings[J]. Australian Journal of Botany, 2010, 58(7): 519-526.
( ![]() |
[59] |
黄科朝, 胥晓, 李霄峰, 等. 小五台山青杨雌雄植株树轮生长特性及其对气候变化的响应差异[J]. 植物生态学报, 2014, 38(3): 270-280. Huang K C, Xu X, Li X F, et al. Gender-specific characteristics of tree-ring growth and differential responses to climate change in the dioecious tree Populus cathayana in Xiaowutai Mountains, China[J]. Chinese Journal of Plant Ecology, 2014, 38(3): 270-280. ( ![]() |
[60] |
翟飞飞, 刘俊祥, 毛金梅, 等. 蒿柳雌株与雄株在高温胁迫下的生理差异及其变异[J]. 北京林业大学学报, 2016, 38(1): 43-49. ZHAI F F, LIU J X, MAO J M, et al. Physiological differences and variations in male and female plants of Salix viminalis under high temperature stress[J]. Journal of Beijing Forestry University, 2016, 38(1): 43-49. ( ![]() |
[61] |
翟飞飞, 刘俊祥, 李振坚, 等.蒿柳雌株与雄株在高温胁迫下的光合生理差异[C].//中国观赏园艺研究进展2017.北京: 中国林业出版社, 2017: 423-428. Zhai F F, Liu J X, Li Z J, et al. Physiological differences in male and female plants of Salix viminalis under high temperature stress[C].//Advances in Ornamental Horticulture of China, 2017. Beijing: China Forestry Press, 2017: 423-428. ( ![]() |
[62] |
Zhao H, Li Y, Zhang X, et al. Sex-related and stage-dependent source-to-sink transition in Populus cathayana grown at elevated CO2 and elevated temperature[J]. Tree Physiology, 2012, 32(11): 1325-1338.
( ![]() |
[63] |
Jones M H, Macdonald S E, Henry G H. Sex-and habitat-specific responses of a high arctic willow, Salix arctica, to experimental climate change[J]. Oikos, 1999, 129-138.
( ![]() |
[64] |
柴弋霞, 曾雯, 蔡梦颖, 等.铁冬青雌雄株的抗寒性比较研究[C].//中国观赏园艺研究进展.北京: 中国林业出版社, 2016: 413-418. Chai Y X, Zeng W, Cai M Y, et al. Physiological characteristics and cold hardiness between male and female plants of Ilex rotunda Thunb[C].//Advances in Ornamental Horticulture of China, 2016. Beijing: China Forestry Press, 2016: 413-418. ( ![]() |
[65] |
Wang X. Reproduction and progeny of Silene latifolia (Caryophyllaceae) as affected by atmospheric CO2 concentration[J]. American Journal of Botany, 2005, 92(5): 826-832.
( ![]() |
[66] |
Retuerto R, Lema B F, Roiloa S R, et al. Gender, Light and water effects in carbon isotope discrimination, and growth rates in the dioecious tree Ilex aquifolium[J]. Functional Ecology, 2000, 14(5): 529-537.
( ![]() |
[67] |
Wang X, Curtis P S. Gender-specific responses of Populus tremuloides to atmospheric CO2 enrichment[J]. New Phytologist, 2001, 150(3): 675-684.
( ![]() |
[68] |
Marabottini R, Schraml C, Paolacci A R, et al. Foliar antioxidant status of adult Mediterranean oak species (Quercus ilex L. and Q. pubescens Willd.) exposed to permanent CO2-enrichment and to seasonal water stress[J]. Environmental Pollution, 2001, 115(3): 413-423.
( ![]() |
[69] |
Schwanz P, Polle A. Antioxidative systems, pigment and protein contents in leaves of adult Mediterranean oak species (Quercus pubescens and Q. ilex) with lifetime exposure to elevated CO2[J]. New Phytologist, 2010, 140(3): 411-423.
( ![]() |
[70] |
Gillespie K M, Rogers A, Ainsworth E A. Growth at elevated ozone or elevated carbon dioxide concentration alters antioxidant capacity and response to acute oxidative stress in soybean (Glycine max)[J]. Journal of Experimental Botany, 2011, 62(8): 2667-2678.
( ![]() |
[71] |
Ruuhola T, Nybakken L, Julkunen-Tiitto R. Sex-related differences of two ecologically divergent Salix species in the responses of enzyme activities to atmospheric CO2 enrichment[J]. Biologia Plantarum, 2013, 57(57): 732-738.
( ![]() |
[72] |
Hanada K, Sawada Y, Kuromori T, et al. Functional compensation of primary and secondary metabolites by duplicate genes in Arabidopsis thaliana[J]. Molecular biology evolution, 2010, 28(1): 377-382.
( ![]() |
[73] |
Tevini M, Teramura A H. UV-B effects on terrestrial plants[J]. Photochemistry and Photobiology, 1989, 50(4): 479-487.
( ![]() |
[74] |
Kim B C, Tennessen D J, Last R L. UV-B-induced photomorphogenesis in Arabidopsis thaliana[J]. Plant Journal for Cell Molecular Biology, 2010, 15(5): 667-674.
( ![]() |
[75] |
Secchi F, Gilbert M E, Zwieniecki M A. Transcriptome response to embolism formation in stems of Populus trichocarpa provides insight into signaling and the biology of refilling[J]. Plant Physiology, 2011, 157(3): 1419-1429.
( ![]() |
[76] |
Strømme C, Julkunen T R, Krishna U, et al. UV-B and temperature enhancement affect spring and autumn phenology in Populus tremula[J]. Plant, Cell environmental Biology of Fishes, 2015, 38(5): 867-877.
( ![]() |
[77] |
Xu X, Zhao H, Zhang X, et al. Different growth sensitivity to enhanced UV-B radiation between male and female Populus cathayana[J]. Tree Physiology, 2010, 30(12): 1489-1498.
( ![]() |
[78] |
Jiang H, Zhao H, Zhang S, et al. Sexually different physiological responses of Populus cathayana to nitrogen and phosphorus deficiencies[J]. Tree Physiology, 2014, 34(4): 343-354.
( ![]() |
[79] |
Zhang Y, Feng L, Jiang H, et al. Different proteome profiles between male and female Populus cathayana exposed to UV-B radiation[J]. Frontiers in plant science, 2017(8): 1-12.
( ![]() |
[80] |
Dolkar P, Dolkar D, Kant A, et al. Gender differences in phenotypic plasticity and adaptive response of Seabuckthorn (Hippophae rhamnoides L.) along an altitudinal gradient in trans-Himalaya[J]. Journal of Berry Research, 2019, 9(1): 1-10.
( ![]() |
[81] |
Sivadasan U, Randriamanana T, Cao C, et al. Effect of climate change on bud phenology of young aspen plants (Populus tremula. L)[J]. Ecology Evolution, 2017, 7(19): 7998-8007.
( ![]() |
[82] |
彭向永.雌、雄蒿柳花芽分化机制及性别决定基因挖掘[D].北京: 中国林业科学研究院, 2017. Peng X Y. Mechnism of Floral Bud Differentiation and Discovery of Sex Determination Genes in Male and Female Salix viminalis[D]. Beijing: Chinese Academy of Forestry, 2017. ( ![]() |
[83] |
陈平平. 银杏性别及其研究进展[J]. 生物学通报, 1997(12): 7-8. Chen P P. Sex of Ginkgo biloba and Its Research Progress[J]. Bulletin of Biology, 1997(12): 7-8. ( ![]() |
[84] |
高力力. 阿月浑子雌、雄树的早期鉴别[J]. 甘肃科技, 2005(8): 180-179. Gao L L. Early Identification of Male and Female Trees in Pistacia vera L[J]. Gansu Science and Technology, 2005(8): 180-179. ( ![]() |
[85] |
强晓霞.大麻性别分化的生理学研究[D].南京: 南京农业大学, 2012. Qiang X X. Physiology Study on Sex Differentiation of HEMP(Cannabis sativa L)[D]. Nanjing: Nanjing Agricultuaral University, 2012. ( ![]() |
[86] |
高武军.石刁柏雌雄株间细胞学、内源物质及分子标记研究[D].郑州: 河南大学, 2008. Gao W J. Studies on Cytology, Endogenous and Molecular Markers between Male and Female Plants of Asparagus officinalis L[D]. Zhengzhou: Henan University, 2008. ( ![]() |
[87] |
吕佳淑.大麻性别相关的遗传标记研究[D].北京: 中国农业科学院, 2010. Lv J S. Studies on Sex Related Genetic Markers of Cannabis sativa L[D]. Beijing: Chinese of Agricultural Sciences, 2010. ( ![]() |
[88] |
董莉娜, 苏雪, 孙坤, 等. DNA分子标记在雌雄异株植物性别鉴定中的应用[J]. 广西植物, 2006, 26(1): 63-68. Dong L N, Su X, Sun K, et al. Applications of DNA Molecular Markers on Sex Identification of Dioecious Plants[J]. Guihaia, 2006, 26(1): 63-68. ( ![]() |
[89] |
李瑞丽, 卢龙斗, 高武军, 等. 雌雄异株植物性别鉴定的研究进展[J]. 广西植物, 2006, 26(4): 387-391. Li R L, Lu L D, Gao W J, et al. Advances in Sex Identification of Dioecious Plants[J]. Guihaia, 2006, 26(4): 387-391. ( ![]() |
[90] |
Gattuso J P, Magnan A, Bille R, et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios[J]. Science, 2015, 349(6243): 4722-4722.
( ![]() |