中国海洋大学学报自然科学版  2020, Vol. 50 Issue (4): 145-150  DOI: 10.16441/j.cnki.hdxb.20180004

引用本文  

张新丽. 具有跳跃项的Duffing方程的拟周期解[J]. 中国海洋大学学报(自然科学版), 2020, 50(4): 145-150.
ZHANG Xin-Li. Quasi-Periodic Solutions for Duffing Equation with Jumping Term[J]. Periodical of Ocean University of China, 2020, 50(4): 145-150.

基金项目

国家自然科学基金项目(11571327)资助
Supported by the National Natural Science Foundation of China(11571327)

作者简介

张新丽(1979-),女, 博士,副教授。E-mail:zxl@qust.edu.cn

文章历史

收稿日期:2019-08-09
修订日期:2019-10-28
具有跳跃项的Duffing方程的拟周期解
张新丽     
1. 中国海洋大学数学科学学院,山东 青岛 266100;
2. 青岛科技大学数理学院,山东 青岛 266061
摘要:本文研究了一类具有非对称项和有界扰动项的Duffing方程。当扰动项是拟周期函数时,利用典则变换和光滑拟周期扭转映射的不变曲线定理,证明了方程任意解的有界性和拟周期解的存在性。
关键词Duffing方程    拟周期解    扭转映射    不变曲线    
引言

近年来,具有跳跃项的半线性Duffing方程

$ x'' + a{x^ + } - b{x^ - } = f\left( {x,t} \right) $ (1)

已成为非线性振动理论研究的热点(见文献[1-10]),其中ab是正常数,且abx+=max{x, 0},x=max{-x, 0},当方程中f(x, t)只与t有关时,方程(1)变为

$ x'' + a{x^ + } - b{x^ - } = f\left( t \right)。$ (2)

Dancer[1]和Fucik[2]研究了方程(2)的边值问题。Ortega[3]研究了方程

$ x'' + a{x^ + } - b{x^ - } = 1 + \varepsilon h\left( t \right)。$ (3)

他证明了当ε充分小,h(t)∈C4(R /2π Z)时,一切解是有界的,即对于任意tR,解x(t)

$ \mathop {\sup }\limits_{x \in {\bf{R}}} \left( {|x(t)| + \left| {{x^\prime }(t)} \right|} \right) < + \infty 。$

另一方面,当$\frac{1}{{\sqrt a }} + \frac{1}{{\sqrt b }} \in \bf{Q}$时,Alonso和Ortega[4]在大初始条件下构造了一个2π无界周期解,这就意味着无界解和周期解同时存在。

Liu[5]和Fabry[6]研究了方程(2),在一些合理假设下,当$\frac{1}{{\sqrt a }} + \frac{1}{{\sqrt b }} \in \bf{Q}$时,证明了方程(2)解的有界性。

Liu[7]将方程(2)中f(t)是周期情形的结果推广到了拟周期情形。他首先建立了拟周期反转映射的不变曲线的存在性定理,并利用它证明了当f(t)是实解析拟周期函数时,方程(2)拟周期解的存在性和任意解的有界性。

文献[8]建立了光滑拟周期映射的不变曲线的存在性定理,并证明了当f(t)是光滑拟周期函数时,方程(2)的拟周期解的存在性和任意解的有界性。

Wang[9]研究了方程(1)中函数f(x, t)=p(t)-φ(x)的情况,其中p(t)为光滑的2π周期函数,扰动项φ(x)为有界函数,利用Ortega建立的扭转定理,证明了周期解的有界性。

文献[10]研究了方程

$ {x^{\prime \prime }} + a{x^ + } - b{x^ - } = {G_x}(x,t) + p(t)。$ (4)

式中:p(t)∈C23(R /2π Z);G(x, t)∈C21(R×R /2π Z),利用Moser小扭转定理证明了方程任意解的有界性。

受文献[8-9]启发,本文研究方程

$ {x^{\prime \prime }} + a{x^ + } - b{x^ - } + \varphi (x) = p(t)。$ (5)

式中:扰动项φ(x)为有界函数,且φ(0)=0;p(t)是光滑拟周期函数,其频率ω=(ω1ω2,…,ωn)满足Diophantine条件

$ |\langle k,\omega \rangle | = \left| {\sum\limits_{j = 1}^n {{k_j}} {\omega _j}} \right| \ge \frac{{{\sigma _0}}}{{|k{|^\mu }}},0 \ne k \in {{\bf{Z}}^n}, $ (6)

式中:|k| = |k1| +| k2| +…+ |kn |;常数σ0μ>0。利用文献[8]中的扭转定理,证明了方程(5)的拟周期解的存在性和任意解的有界性。

先引入辅助函数[4]

$ C\left( t \right) = \left\{ {\begin{array}{*{20}{c}} {\cos \sqrt a t,}&{0 \le \left| t \right| \le \frac{{\rm{ \mathsf{ π} }}}{{2\sqrt a }}}\\ { - \sqrt {\frac{a}{b}} \sin \sqrt b \left( {\left| t \right| - \frac{{\rm{ \mathsf{ π} }}}{{2\sqrt a }}} \right),}&{\frac{{\rm{ \mathsf{ π} }}}{{2\sqrt a }} \le \left| t \right| \le \frac{{\rm{ \mathsf{ π} }}}{2}\left( {\frac{1}{{\sqrt a }} + \frac{1}{{\sqrt b }}} \right)} \end{array}} \right., $

C(t)是初值问题

$ \left\{ {\begin{array}{*{20}{l}} {{x^{\prime \prime }} + a{x^ + } - b{x^ - } = 0}\\ {x\left( 0 \right) = 1,{x^\prime }\left( 0 \right) = 0} \end{array}} \right. $

的解。记S(t)=-C′(t),则

(Ⅰ) C(-t)=C(t), S(-t)=-S(t)。

(Ⅱ)C(t), S(t)都是关于变量t的2πω0周期函数,其中${\omega _0} = \left({\frac{1}{{\sqrt a }} + \frac{1}{{\sqrt b }}} \right)$

(Ⅲ)S2(t)+a(C+(t))2+b(C(t))2a

本文的主要结果如下:

定理1  设对任意的kZ n\{0}有〈k, ωω0$\notin $ Z,若(H1)p(t)∈Cq+1(q>2n+1),且

$ \int_0^{2{\rm{ \mathsf{ π} }}} p \left( {{t_0} + {\omega _0}\theta } \right)C\left( {{\omega _0}\theta } \right){\rm{d}}\theta \ne 0,{t_0} \in {\bf{R}}; $
$ \left( {{{\rm{H}}_2}} \right)\varphi \left( x \right) \in {C^q}\left( {\bf{R}} \right),\mathop {\lim }\limits_{t \to + \infty } {x^q}{\varphi ^{\left( q \right)}}\left( x \right) = 0, $

$\varphi (+ \infty) = \mathop {\lim }\limits_{x \to + \infty } \varphi (x), \varphi (- \infty) = \mathop {\lim }\limits_{x \to \infty } \varphi (x)$都是有限的;

$ \left( {{{\rm{H}}_3}} \right)b\varphi \left( { + \infty } \right) - a\varphi \left( { - \infty } \right) \ne {p_0}\left( {b - a} \right)。$

则方程(5)有无穷多个拟周期解,且所有解是有界的。

定理2  设存在kZ n满足〈k, ωω0〉∈ Z,记K:=$\left\{ {k \in {{\bf{Z}}^n}|\left\langle {k, \omega {\omega _0}} \right\rangle \in {\bf{Z}}} \right\}, {p_k}(t) = \sum\limits_{k \in K} {{p_k}} {{\rm{e}}^{{\rm{i}}\left\langle {k, \omega } \right\rangle t}}$,若

(H4)p(t)∈Cq+1(q>2n+3),且

$ \int_0^{2{\rm{ \mathsf{ π} }}} p \left( {{t_0} + {\omega _0}\theta } \right)C\left( {{\omega _0}\theta } \right){\rm{d}}\theta \ne 0,{t_0} \in {\bf{R}}; $
$ \left( {{{\rm{H}}_2}} \right)\varphi \left( x \right) \in {C^q}\left( {\bf{R}} \right),\mathop {\lim }\limits_{\left| x \right| \to \infty } {x^q}{\varphi ^{\left( q \right)}}\left( x \right) = 0, $

$\varphi (+ \infty) = \mathop {\lim }\limits_{x \to + \infty } \varphi (x), \varphi (- \infty) = \mathop {\lim }\limits_{x \to - \infty } \varphi (x)$存在有界;

$ \begin{array}{l} \left( {{{\rm{H}}_5}} \right)\sigma \omega _0^{\frac{3}{2}}\int_0^{2{\rm{ \mathsf{ π} }}} {\left[ {{p_K}\left( {{\tau _0} + {\omega _0}\theta } \right)C\left( {{\omega _0}\theta } \right)} \right]{\rm{d}}\theta } \ne \\ \;\;\;\;\;\;2\left( {\frac{1}{a}\varphi \left( { + \infty } \right) - \frac{1}{b}\varphi \left( { - \infty } \right)} \right),\;\;\forall {\tau _0} \in {\bf{R}}, \end{array} $

则方程(5)有无穷多个拟周期解,且所有解是有界的。

在下文中,规定c < 1和C>1是两个通用的正常数。

1 准备工作

方程(5)等价于下面的非自治Hamilton系统

$ \left\{ {\begin{array}{*{20}{l}} {{x^\prime } = - y = - \frac{{\partial H\left( {x,y,t} \right)}}{{\partial y}}}\\ {{y^\prime } = a{x^ + } - b{x^ - } + \varphi \left( x \right) - p\left( t \right) = \frac{{\partial H\left( {x,y,t} \right)}}{{\partial x}}} \end{array}} \right., $ (7)

其中

$ \begin{array}{l} H\left( {x,y,t} \right) = \frac{1}{2}{y^2} + \frac{1}{2}a{\left( {{x^ + }} \right)^2} + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{1}{2}b{\left( {{x^ - }} \right)^2} + \mathit{\Phi }(x) - xp(t),\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\mathit{\Phi }(x) = \int_0^x \varphi (s){\rm{d}}s。\end{array} $

容易证明下面的引理:

引理1 对任意x0, y0R 2, t0R,哈密顿系统(7)在整个t轴上存在满足z(t0)=(x0, y0)的解为z(t)=(x(t; t0, x0, y0), y(t; t0, x0, y0))。

利用变换

$ (r,\theta ) \to (x,y):x = \sigma {r^{\frac{1}{2}}}C\left( {{\omega _0}\theta } \right),y = \sigma {r^{\frac{1}{2}}}S\left( {{\omega _0}\theta } \right), $

其中r>0, θmod(2π), $\sigma = \sqrt {\omega _0^{ - 1}{a^{ - 1}}} $,将系统(7)变换为关于(r, θ)的Hamilton系统

$ {r^\prime } = - \frac{{\partial h}}{{\partial \theta }}\left( {r,\theta ,t} \right),{\theta ^\prime } = \frac{{\partial h}}{{\partial r}}\left( {r,\theta ,t} \right), $ (8)

其中

$ h\left( {r,\theta ,t} \right) = \omega _0^{ - 1}r + {I_1}(r,\theta ) + {I_2}\left( {r,\theta ,t} \right), $ (9)
$ \begin{array}{*{20}{c}} {{I_1}(r,\theta ) = 2\mathit{\Phi }\left( {\sigma {r^{\frac{1}{2}}}C\left( {{\omega _0}\theta } \right)} \right),}\\ {{I_2}(r,\theta ,t) = - 2\sigma {r^{\frac{1}{2}}}p(t)C\left( {{\omega _0}\theta } \right)。} \end{array} $ (10)

φ(x)∈Cq(R), p(t)∈Cq+1(R /2π Z)知,I1, I2关于r, θ分别为Cq+1, C2。记

$ J\left( r \right): = \frac{1}{{2{\rm{ \mathsf{ π} }}}}\int_0^{2{\rm{ \mathsf{ π} }}} {{I_1}} \left( {r,\theta } \right){\rm{d}}\theta 。$ (11)

有如下结论(见文献[4]):

$ \left( {\rm{I}} \right)\left| {{I_1}(r,\theta )} \right| \le C{r^{\frac{1}{2}}},\;|J(r)| \le C{r^{\frac{1}{2}}}, $ (12)

(Ⅱ)

$ \begin{array}{*{20}{c}} {\left| {\frac{{{\partial ^k}}}{{\partial {r^k}}}{I_1}(r,\theta )} \right| \le C{r^{ - k + \frac{1}{2}}},}\\ {\left| {\frac{{{d^k}}}{{d{r^k}}}J(r)} \right| \le C{r^{ - k + \frac{1}{2}}},1 \le k \le q + 1。} \end{array} $ (13)

(Ⅲ)若函数

$ \begin{array}{*{20}{c}} {R(h,t,\theta ) = {\omega _0}{I_1}\left( {{\omega _0}h - R,\theta } \right) - }\\ {2\sigma {\omega _0}{{\left( {{\omega _0}h - R} \right)}^{\frac{1}{2}}}p(t)C\left( {{\omega _0}\theta } \right)} \end{array} $ (14)

光滑且$|R(h, t, \theta)| \le \frac{1}{2}{\omega _0}h, h > > 1$,则

$ \left| {\frac{{{\partial ^{k + l}}}}{{\partial {h^k}\partial {t^l}}}R(h,t,\theta )} \right| \le C{h^{ - k + \frac{1}{2}}},k + l \le q + 1。$ (15)

(Ⅳ)若假设

$ \begin{array}{*{20}{c}} {R(h,t,\theta ) = {\omega _0}{I_1}\left( {{\omega _0}h - R,\theta } \right) - }\\ {2\sigma \omega _0^{\frac{3}{2}}{h^{\frac{1}{2}}}p(t)C\left( {{\omega _0}\theta } \right) - {R_1}(h,t,\theta ),} \end{array} $ (16)

其中

$ \begin{array}{*{20}{c}} {{R_1}(h,t,\theta ) = - {\omega _0}\int_0^1 {\frac{{\partial {I_1}}}{{\partial r}}} \left( {{\omega _0}h - sR,\theta } \right){\rm{d}}s + }\\ {\sigma {\omega _0}p(t)C\left( {{\omega _0}\theta } \right)\int_0^1 {{{\left( {{\omega _0}h - sR} \right)}^{ - \frac{1}{2}}}} {\rm{d}}s。} \end{array} $ (17)

$ \left| {\frac{{{\partial ^{k + l}}}}{{\partial {h^k}\partial {t^l}}}{R_1}(h,t,\theta )} \right| \le C{h^{ - k}},k + l \le q。$ (18)
$ \left( {\rm{V}} \right)\mathop {\lim }\limits_{r \to + \infty } \sqrt r {J^\prime }(r) = \frac{1}{{\rm{ \mathsf{ π} }}}\omega _0^{ - \frac{3}{2}}\left\{ {\frac{1}{a}\varphi ( + \infty ) - \frac{1}{b}\varphi ( - \infty )} \right\}。$ (19)
$ \left( {{\rm{VI}}} \right)\mathop {\lim }\limits_{r \to + \infty } \frac{{J(r)}}{{\sqrt r }} = \frac{2}{{\rm{ \mathsf{ π} }}}\omega _0^{ - \frac{3}{2}}\left\{ {\frac{1}{a}\varphi ( + \infty ) - \frac{1}{b}\varphi ( - \infty )} \right\}。$ (20)

(Ⅶ)令

$ \mathit{\Psi }(r) = \frac{{J(r)}}{{\sqrt r }} - \frac{2}{{\rm{ \mathsf{ π} }}}\omega _0^{ - \frac{3}{2}}\left\{ {\frac{1}{a}\varphi ( + \infty ) - \frac{1}{b}\varphi ( - \infty )} \right\}, $ (21)

$ \mathop {\lim }\limits_{r \to + \infty } \left| {{r^k}\frac{{{{\rm{d}}^k}}}{{{\rm{d}}{r^k}}}\mathit{\Psi }(r)} \right| = 0,\;0 \le k \le q + 1。$ (22)

下面对哈密顿系统(8)做正则变换。系统(8)的Hamilton函数h(r, θ, t)由(9)式给出。由于

$ r{\rm{d}}\theta - h{\rm{d}}t = - \left( {h{\rm{d}}t - r{\rm{d}}\theta } \right), $

这意味着若从(9)式能解出r=r(h, t, θ)作为h, tθ的函数,于是

$ \frac{{{\rm{d}}h}}{{{\rm{d}}\theta }} = - \frac{{\partial r}}{{\partial t}}(h,t,\theta ),\;\;\frac{{{\rm{d}}t}}{{{\rm{d}}\theta }} = \frac{{\partial r}}{{\partial h}}(h,t,\theta )。$ (23)

方程(23)是一个Hamilton系统,它以r=r(h, t, θ)为其Hamilton函数,以h, tθ分别作为作用变量、角变量和时间变量。由(9)知

$ \mathop {\lim }\limits_{r \to + \infty } \frac{h}{r} = \omega _0^{ - 1} > 0, $
$ \begin{array}{*{20}{c}} {\frac{{\partial h}}{{\partial r}} = \omega _0^{ - 1} + \frac{\partial }{{\partial r}}{I_1}\left( {r,\theta ,t} \right) + \frac{\partial }{{\partial r}}{I_2}\left( {r,\theta ,t} \right) > }\\ {\omega _0^{ - 1} - C{r^{ - \frac{1}{2}}} - C{r^{ - \frac{1}{2}}} > 0。} \end{array} $ (24)

由隐函数定理知,存在函数R=R(h, t, θ),使得

$ r(h,t,\theta ) = {\omega _0}h - R(h,t,\theta ), $

$|R(h, t, \theta)| \le \frac{1}{2}{\omega _0}h, h > > 1$R(h, t, θ)关于h, tCq+1的。再由式(9)和(24)知,R(h, t, θ)满足式(14)。由式(16),可将函数r写成如下形式

$ \begin{array}{*{20}{c}} {r(h,t,\theta ) = {\omega _0}h - {\omega _0}{I_1}\left( {{\omega _0}h,\theta } \right) + }\\ {2\sigma \omega _0^{\frac{3}{2}}{h^{\frac{1}{2}}}p(t)C\left( {{\omega _0}\theta } \right) - {R_1}(h,t,\theta ),} \end{array} $ (25)

其中R1(h, t, θ)满足(18)。因此系统(8)转化为

$ \frac{{{\rm{d}}h}}{{{\rm{d}}\theta }} = - \frac{{\partial r}}{{\partial t}}(h,t,\theta ),\;\;\;\;\frac{{{\rm{d}}t}}{{{\rm{d}}\theta }} = \frac{{\partial r}}{{\partial h}}(h,t,\theta )。$ (26)

引理2[9]  存在正则变换Φ1h=ρ, t=τ+T(ρ, θ),其中T(ρ, θ+2π)=T(ρ, θ)。在此变换下,Hamilton函数(25)变换为

$ \begin{array}{*{20}{c}} {\tilde r(\rho ,\tau ,\theta ) = {\omega _0}\rho - {\omega _0}J\left( {{\omega _0}\rho } \right) + }\\ {2\sigma \omega _0^{\frac{3}{2}}{\rho ^{\frac{1}{2}}}p(\tau )C\left( {{\omega _0}\theta } \right) - {{\tilde R}_1}(\rho ,\tau ,\theta ),} \end{array} $ (27)

$\left| {\frac{{{\partial ^{k + l}}}}{{\partial {\rho ^k}\partial {\tau ^l}}}{\rm{ }}{{\tilde R}_1}(\rho, \tau, \theta)} \right| \le C{\rho ^{ - k}}, \quad k + l \le q$

2 定理的证明

本节利用文献[8]中的小扭转定理来证明2个定理。考虑正则变换后的Hamilton系统

$ \frac{{{\rm{d}}\rho }}{{{\rm{d}}\theta }} = - \frac{{\partial \tilde r}}{{\partial \tau }}(\rho ,\tau ,\theta ),\;\;\;\;\frac{{{\rm{d}}\tau }}{{{\rm{d}}\theta }} = \frac{{\partial \tilde r}}{{\partial \rho }}(\rho ,\tau ,\theta ), $ (28)

其中Hamilton函数(ρ, τ, θ)由式(27)给出。

先给出系统(28)的Poincare映射的表达式。引入新变量$\nu \in \left[ {\frac{1}{2},1} \right]$和小参数δ>0,满足

$ \rho = {\delta ^{ - 2}}v,\;\;\;\;v \in \left[ {\frac{1}{2},1} \right], $ (29)

显然,系统(28)变换为

$ \frac{{{\rm{d}}v}}{{{\rm{d}}\theta }} = - \frac{{\partial H}}{{\partial \tau }}(v,\tau ,\theta ,\delta ),\;\;\;\;\frac{{{\rm{d}}\tau }}{{{\rm{d}}\theta }} = \frac{{\partial H}}{{\partial v}}(v,\tau ,\theta ,\delta ), $ (30)

其中

$ \begin{array}{*{20}{c}} {H(v,\tau ,\theta ,\delta ) = {\omega _0}v - {\delta ^2}{\omega _0}J\left( {{\omega _0}{\delta ^{ - 2}}v} \right) + }\\ {2\sigma \omega _0^{\frac{3}{2}}\delta {v^{\frac{1}{2}}}p(\tau )C\left( {{\omega _0}\theta } \right) - {\delta ^2}{{\tilde R}_1}\left( {{\delta ^{ - 2}}v,\tau ,\theta } \right)。} \end{array} $

由(21)知

$ \begin{array}{l} J\left( {{\omega _0}{\delta ^{ - 2}}v} \right) = \frac{2}{{\rm{ \mathsf{ π} }}}\omega _0^{ - 1}{\delta ^{ - 1}}{v^{\frac{1}{2}}}\left\{ {\frac{1}{a}\varphi ( + \infty ) - \frac{1}{b}\varphi ( - \infty )} \right\} + \\ \;\;\;\;\;\;\omega _0^{\frac{1}{2}}{\delta ^{ - 1}}{v^{\frac{1}{2}}}\mathit{\Psi }\left( {{\omega _0}{\delta ^{ - 2}}v} \right), \end{array} $ (31)

J(ω0δ-2v)代入Hamilton函数H(v, τ, θ, δ),得

$ \begin{array}{l} H(v,\tau ,\theta ,\delta ) = {\omega _0}v - 2\delta {v^{\frac{1}{2}}}\frac{1}{{\rm{ \mathsf{ π} }}}\left[ {\frac{1}{a}\varphi ( + \infty ) - \frac{1}{b}\varphi ( - \infty )} \right] + \\ \;\;\;\;\;\;2\delta {v^{\frac{1}{2}}}\sigma {\omega ^{\frac{3}{2}}}p(\tau )C\left( {{\omega _0}\theta } \right) + G(v,\tau ,\theta ,\delta ), \end{array} $

其中

$ G(v,\tau ,\theta ,\delta ) = - \omega _0^{\frac{3}{2}}\delta {v^{\frac{1}{2}}}\Psi \left( {{\omega _0}{\delta ^{ - 2}}v} \right) - {\delta ^2}{{\tilde R}_1}\left( {{\delta ^{ - 2}}v,\tau ,\theta } \right)。$

由注释(Ⅶ)和引理2得到

$ {\delta ^{ - 1}}\left| {\frac{{{\partial ^{k + l}}}}{{\partial {v^k}\partial {\tau ^l}}}G(v,\tau ,\theta ,\delta )} \right| \to 0,k + l \le q - 1,\delta \to {0^ + }, $ (32)

新的Hamilton函数H(v, τ, θ, δ)代入系统(29)得到

$ \left\{ \begin{array}{l} \frac{{{\rm{d}}v}}{{{\rm{d}}\theta }} = - 2\delta \sigma \omega _0^{\frac{3}{2}}{v^{\frac{1}{2}}}{p^\prime }(\tau )C\left( {{\omega _0}\theta } \right) - \frac{{\partial G(v,\tau ,\theta ,\delta )}}{{\partial \tau }},\\ \frac{{{\rm{d}}\tau }}{{{\rm{d}}\theta }} = {\omega _0} - \delta {v^{ - \frac{1}{2}}}\frac{1}{{\rm{ \mathsf{ π} }}}\left[ {\frac{1}{a}\varphi ( + \infty ) - \frac{1}{b}\varphi ( - \infty )} \right] + \\ \delta {v^{ - \frac{1}{2}}}\sigma \omega _0^{\frac{3}{2}}p(\tau )C\left( {{\omega _0}\theta } \right) + \frac{{\partial G}}{{\partial v}}(v,\tau ,\theta ,\delta ), \end{array} \right. $ (33)

在初始条件(v(v0, τ0, 0), τ(v0, τ0, 0))=(v0, τ0)下,系统(33)存在解(v(v0, τ0, θ), τ(v0, τ0, θ)),可设它有如下表达式

$ \left\{ \begin{array}{l} v\left( {{v_0},{\tau _0},\theta } \right) = {v_0} + \delta {F_2}\left( {{v_0},{\tau _0},\theta } \right)\\ \tau \left( {{v_0},{\tau _0},\theta } \right) = {\tau _0} + {\omega _0}\theta + \delta {F_1}\left( {{v_0},{\tau _0},\theta } \right) \end{array} \right.。$ (34)

因此系统(33)的Poincare映射P1

$ \begin{array}{*{20}{c}} {{P_1}\left( {{v_0},{\tau _0}} \right) = \left( {{v_0} + \delta {F_2}\left( {{v_0},{\tau _0},\theta } \right),{\tau _0} + {\omega _0}\theta + } \right.}\\ {\left. {\delta {F_1}\left( {{v_0},{\tau _0},\theta } \right)} \right)。} \end{array} $

对(34)两边求导得

$ \left\{ \begin{array}{l} \frac{{{\rm{d}}{F_1}}}{{{\rm{d}}\theta }} = - \left( {{v_0} + \delta {F_2}} \right) - \frac{1}{2}\frac{1}{\pi }\left[ {\frac{1}{a}\varphi ( + \infty ) - \frac{1}{b}\varphi ( - \infty )} \right] \cdot \\ {\left( {{v_0} + \delta {F_2}} \right)^{ - \frac{1}{2}}}\sigma \omega _0^{\frac{3}{2}}p(\tau )C\left( {{\omega _0}\theta } \right) + {\delta ^{ - 1}}\frac{{\partial G}}{{\partial v}}(v,\tau ,\theta ,\delta ),\\ \frac{{{\rm{d}}{F_2}}}{{{\rm{d}}\theta }} = - 2\sigma \omega _0^{\frac{3}{2}}{\left( {{v_0} + \delta {F_2}} \right)^{\frac{1}{2}}}{p^\prime }(\tau )C\left( {{\omega _0}\theta } \right) - \\ {\delta ^{ - 1}}\frac{{\partial G(v,\tau ,\theta ,\delta )}}{{\partial \tau }}。\end{array} \right. $ (35)

由式(32)和(35)可得,当δ→0+, k+lq-2, 时,

$ \left| {\frac{{{\partial ^{k + l}}}}{{\partial v_0^k\partial \tau _0^l}}{F_1}\left( {{v_0},{\tau _0},\theta } \right)} \right| \le {C_0}, $
$ \left| {\frac{{{\partial ^{k + l}}}}{{\partial v_0^k\partial \tau _0^l}}{F_2}\left( {{v_0},{\tau _0},\theta } \right)} \right| \le {C_0}, $

其中C0是与δ无关的常数。此时记作

$ {F_1}\left( {{v_0},{\tau _0},\theta } \right) = {O_{q - 2}}(1),{F_2}\left( {{v_0},{\tau _0},\theta } \right) = {O_{q - 2}}(1)。$

若当δ→0+k+lq-2时

$ \left| {\frac{{{\partial ^{k + l}}}}{{\partial v_0^k\partial \tau _0^l}}{F_1}\left( {{v_0},{\tau _0},\theta } \right)} \right| \to 0, $
$ \left| {\frac{{{\partial ^{k + l}}}}{{\partial v_0^k\partial \tau _0^l}}{F_2}\left( {{v_0},{\tau _0},\theta } \right)} \right| \to 0, $

记作

$ {F_1}\left( {{v_0},{\tau _0},\theta } \right) = {o_{q - 2}}(1),{F_2}\left( {{v_0},{\tau _0},\theta } \right) = {o_{q - 2}}(1)。$

因此

$ \begin{array}{*{20}{c}} {v\left( {{v_0},{\tau _0},\theta } \right) = {v_0} + \delta {O_{q - 2}}(1),}\\ {\tau \left( {{v_0},{\tau _0},\theta } \right) = {\tau _0} + {\omega _0}\theta + \delta {O_{q - 2}}(1)。} \end{array} $ (36)

由式(35)直接计算知

$ \begin{array}{l} {F_1}\left( {{v_0},{\tau _0},2{\rm{ \mathsf{ π} }}} \right) = \\ - \int_0^{2{\rm{ \mathsf{ π} }}} {\left( {{v_0} + \delta {F_2}} \right)} - \frac{1}{2}\frac{1}{{\rm{ \mathsf{ π} }}}\left[ {\frac{1}{a}\varphi ( + \infty ) - \frac{1}{b}\varphi ( - \infty )} \right]{\rm{d}}\theta + \\ \int_0^{2{\rm{ \mathsf{ π} }}} {{{\left( {{v_0} + \delta {F_2}} \right)}^{ - \frac{1}{2}}}} \sigma \omega _0^{\frac{3}{2}}p(\tau )C\left( {{\omega _0}\theta } \right){\rm{d}}\theta + {o_{q - 2}}(1) = \\ - \int_0^{2{\rm{ \mathsf{ π} }}} {v_0^{ - \frac{1}{2}}} \frac{1}{{\rm{ \mathsf{ π} }}}\left[ {\frac{1}{a}\varphi ( + \infty ) - \frac{1}{b}\varphi ( - \infty )} \right]{\rm{d}}\theta + \\ \int_0^{2{\rm{ \mathsf{ π} }}} {v_0^{ - \frac{1}{2}}} \sigma {\omega ^{\frac{3}{2}}}p(\tau )C\left( {{\omega _0}\theta } \right){\rm{d}}\theta + {o_{q - 2}}(1) = \\ - v_0^{ - \frac{1}{2}}2\left( {\frac{1}{a}\varphi ( + \infty ) - \frac{1}{b}\varphi ( - \infty )} \right) + \\ v_0^{ - \frac{1}{2}}\sigma {\omega ^{\frac{3}{2}}}\int_0^{2{\rm{ \mathsf{ π} }}} {\left[ {p\left( {{\tau _0} + {\omega _0}\theta } \right)C\left( {{\omega _0}\theta } \right)} \right]} {\rm{d}}\theta + {o_{q - 2}}(1), \end{array} $
$ \begin{array}{l} {F_2}\left( {{v_0},{\tau _0},2{\rm{ \mathsf{ π} }}} \right) = \\ - 2\sigma \omega _0^{\frac{3}{2}}\int_0^{2{\rm{ \mathsf{ π} }}} {{{\left( {{v_0} + \delta {F_2}} \right)}^{\frac{1}{2}}}} {p^\prime }(\tau )C\left( {{\omega _0}\theta } \right)d\theta + {o_{q - 2}}(1) = \\ - 2\sigma \omega _0^{\frac{3}{2}}v_0^{\frac{1}{2}}\int_0^{2{\rm{ \mathsf{ π} }}} {{p^\prime }} (\tau )C\left( {{\omega _0}\theta } \right){\rm{d}}\theta + {o_{q - 2}}(1) = \\ - 2\sigma \omega _0^{\frac{3}{2}}v_0^{\frac{1}{2}}\int_0^{2{\rm{ \mathsf{ π} }}} {{p^\prime }} \left( {{\tau _0} + {\omega _0}\theta } \right)C\left( {{\omega _0}\theta } \right){\rm{d}}\theta + {o_{q - 2}}(1)。\end{array} $

故Poincare映射P1的表达式为:

$ \left\{ {\begin{array}{*{20}{l}} {{\tau _1} = {\tau _0} + 2{\rm{ \mathsf{ π} }}{\omega _0} - \delta {l_1}\left( {{v_0},{\tau _0}} \right) + \delta {o_{q - 2}}(1),}\\ {{v_1} = {v_0} - \delta {l_2}\left( {{v_0},{\tau _0}} \right) + \delta {o_{q - 2}}(1),} \end{array}} \right. $ (37)

其中

$ \left\{ \begin{array}{l} {l_1}\left( {{v_0},{\tau _0}} \right) = v_0^{ - \frac{1}{2}}2\left( {\frac{1}{a}\varphi ( + \infty ) - \frac{1}{b}\varphi ( - \infty )} \right) - \\ v_0^{ - \frac{1}{2}}\sigma \omega _0^{\frac{3}{2}}\int_0^{2{\rm{ \mathsf{ π} }}} {\left[ {p\left( {{\tau _0} + {\omega _0}\theta } \right)C\left( {{\omega _0}\theta } \right)} \right]{\rm{d}}\theta } ,\\ {l_2}\left( {{v_0},{\tau _0}} \right) = 2\sigma \omega _0^{\frac{3}{2}}v_0^{\frac{1}{2}}\int_0^{2{\rm{ \mathsf{ π} }}} {{p^\prime }} \left( {{\tau _0} + {\omega _0}\theta } \right)C\left( {{\omega _0}\theta } \right)d\theta 。\end{array} \right. $ (38)

引入变换$\tau = \tau, \; u = \frac{1}{v}$,则映射P1变换为:

$ {P_2}\left\{ {\begin{array}{*{20}{l}} {{\tau _1} = {\tau _0} + 2{\rm{ \mathsf{ π} }}{\omega _0} + \delta {l_1}\left( {{u_0},{\tau _0}} \right) + \delta {o_{q - 2}}(1),}\\ {{u_1} = {u_0} + \delta {l_2}\left( {{u_0},{\tau _0}} \right) + \delta {o_{q - 2}}(1),} \end{array}} \right. $ (39)
$ \begin{array}{*{20}{c}} {其中\;{l_1}\left( {{u_0},{\tau _0}} \right) = - 2u_0^{\frac{1}{2}}\left( {\frac{1}{a}\varphi ( + \infty ) - \frac{1}{b}\varphi ( - \infty )} \right) + }\\ {u_0^{\frac{1}{2}}\sigma \omega _0^{\frac{3}{2}}\int_0^{2{\rm{ \mathsf{ π} }}} {\left[ {p\left( {{\tau _0} + {\omega _0}\theta } \right)C\left( {{\omega _0}\theta } \right)} \right]{\rm{d}}\theta } ,}\\ {{l_2}\left( {{u_0},{\tau _0}} \right) = 2\sigma \omega _0^{\frac{3}{2}}u_0^{\frac{3}{2}}\int_0^{2{\rm{ \mathsf{ π} }}} {{p^\prime }} \left( {{\tau _0} + {\omega _0}\theta } \right)C\left( {{\omega _0}\theta } \right){\rm{d}}\theta 。} \end{array} $ (40)

假设函数p(t)具有如下Fourier展开式

$ p\left( t \right) = \sum\limits_k {{p_k}} {{\rm{e}}^{{\rm{i}}\left\langle {k,\omega } \right\rangle t}}。$

定理1的证明:若对任意的kZ n\{0}有〈k, ωω0$ \notin $ Z,由文献[8]中的定理3.1知,若δ充分小且

$\mathop {\lim }\limits_{T \to + \infty } \frac{1}{T}\int_0^T {\frac{{\partial {l_1}\left({{u_0}, {\tau _0}} \right)}}{{{u_0}}}} {\rm{d}}{\tau _0} \ne 0, \mathop {\lim }\limits_{T \to + \infty } \frac{1}{T}\int_0^T {{l_2}} \left({{u_0}, {\tau _0}} \right){\rm{d}}{\tau _0} = 0$时,P1有不变曲线。由式(40)知

$ \begin{array}{l} \mathop {\lim }\limits_{T \to + \infty } \frac{1}{T}\int_0^{\rm{T}} {\frac{{\partial {l_1}\left( {{u_0},{\tau _0}} \right)}}{{{u_0}}}{\rm{d}}{\tau _0}} = \\ \mathop {\lim }\limits_{T \to + \infty } \frac{1}{T}\left[ {\int_0^{\rm{T}} {\left( { - \frac{1}{2}} \right)} u_0^{ - \frac{1}{2}}2\left( {\frac{1}{a}\varphi ( + \infty ) - \frac{1}{b}\varphi ( - \infty )} \right){\rm{d}}{\tau _0}} \right.\\ \left. {\int_0^{\rm{T}} {\frac{{\sigma \omega _0^{\frac{j}{2}}u_0^{ - \frac{1}{2}}}}{2}} \int_0^{2{\rm{ \mathsf{ π} }}} {\left[ {p\left( {{\tau _0} + {\omega _0}\theta } \right)C\left( {{\omega _0}\theta } \right)} \right]{\rm{d}}\theta {\rm{d}}{\tau _0}} } \right] = \\ u_0^ - \frac{1}{2}\left\{ {\left( { - \frac{1}{a}\varphi ( + \infty ) + \frac{1}{b}\varphi ( - \infty )} \right) + {p_0}\left( {\frac{1}{a} - \frac{1}{b}} \right)} \right\} \ne 0, \end{array} $

(+∞)-(-∞)≠p0(ba);

由式(8)及Fubini定理知

$ \begin{array}{l} \mathop {\lim }\limits_{T \to + \infty } \frac{1}{T}\int_0^{\rm{T}} {{l_2}} \left( {{u_0},{\tau _0}} \right){\rm{d}}{\tau _0} = \\ \mathop {\lim }\limits_{T \to + \infty } \frac{1}{T}\int_0^{\rm{T}} 2 \sigma \omega _0^{\frac{3}{2}}u_0^{\frac{3}{2}}\int_0^{2{\rm{ \mathsf{ π} }}} {{p^\prime }} \left( {{\tau _0} + {\omega _0}\theta } \right)C\left( {{\omega _0}\theta } \right){\rm{d}}\theta {\rm{d}}{\tau _0} = \\ \mathop {\lim }\limits_{T \to + \infty } \int_0^{2{\rm{ \mathsf{ π} }}} 2 \sigma \omega _0^{\frac{3}{2}}u_0^{\frac{3}{2}}\left[ {\frac{1}{T}\int_0^T {{p^\prime }} \left( {{\tau _0} + {\omega _0}\theta } \right){\rm{d}}{\tau _0}} \right]C\left( {{\omega _0}\theta } \right){\rm{d}}\theta = 0 \end{array} $

满足文献[8]中定理3.1的所有条件,因此系统(33)的Poincare映射有拟周期不变曲线,频率为(ω1ω2,…,ωn)。从而系统(7)有无穷多个拟周期解,且所有解都是有界的。定理证毕。

注1:从定理1的证明过程知,系统(7)有无穷多个频率为

$ \left( {{\omega _1},{\omega _2}, \cdots ,{\omega _n},\frac{{2{\rm{ \mathsf{ π} }}{\omega _0}}}{{2{\rm{ \mathsf{ π} }}{\omega _0} + \delta \alpha }}} \right) $

的拟周期解,其中α满足下面的条件

$ \left| {\langle k,\omega \rangle \frac{{2{\rm{ \mathsf{ π} }}{\omega _0} + \delta \alpha }}{{2{\rm{ \mathsf{ π} }}}} - j} \right| \ge \frac{{\delta \gamma }}{{|k{|^\tau }}},\;\;\;\;k \in {{\bf{Z}}^n}\backslash \left\{ 0 \right\},j \in {\bf{Z}}, $
$ \alpha \in \left[ {2\eta + {{12}^{ - 3}}\gamma ,2\sqrt 2 \eta - {{12}^{ - 3}}\gamma } \right], $

其中常数γδ充分小,

$ \eta = {p_0}\left( {\frac{1}{a} - \frac{1}{b}} \right) - \left( {\frac{1}{a}\varphi ( + \infty ) - \frac{1}{b}\varphi ( - \infty )} \right)。$

定理2的证明:设存在kZ n满足〈k, ωω0〉∈ Z,记K:=$\left\{ {k \in {{\bf{Z}}^n}|\left\langle {k, \omega {\omega _0}} \right\rangle \in {\bf{Z}}} \right\}, {p_K}(t) = \sum\limits_{k \in K} {{p_k}} {{\rm{e}}^{ik\left\langle {k, w} \right\rangle t}}$,根据文献[8]中定理3.4证明过程知,

$ l = {l_1}\left( {{u_0},{\tau _0}} \right),\quad m = {l_2}\left( {{u_0},{\tau _0}} \right), $
$ \left\{ {\begin{array}{*{20}{l}} {\bar l = {{\bar l}_1}\left( {{u_0},{\tau _0}} \right) = - u_0^{\frac{1}{2}}2\left( {\frac{1}{a}\varphi ( + \infty ) - \frac{1}{b}\varphi ( - \infty )} \right) + }\\ {\sigma \omega _0^{\frac{3}{2}}u_0^{\frac{1}{2}}\int_0^{2{\rm{ \mathsf{ π} }}} {\left[ {{p_K}\left( {{\tau _0} + {\omega _0}\theta } \right)C\left( {{\omega _0}\theta } \right)} \right]{\rm{d}}\theta } ,}\\ {\bar m = {{\bar l}_2}\left( {{u_0},{\tau _0}} \right) = 2\sigma \omega _0^{\frac{3}{2}}u_0^{\frac{3}{2}}\int_0^{2{\rm{ \mathsf{ π} }}} {p_K^\prime } \left( {{\tau _0} + {\omega _0}\theta } \right)C\left( {{\omega _0}\theta } \right){\rm{d}}\theta 。} \end{array}} \right. $

由于∀τ0R

$ \begin{array}{l} u_0^{\frac{1}{2}}2\left( {\frac{1}{a}\varphi ( + \infty ) - \frac{1}{b}\varphi ( - \infty )} \right) \ne \\ \sigma \omega _0^{\frac{3}{2}}u_0^{\frac{1}{2}}\int_0^{2{\rm{ \mathsf{ π} }}} {\left[ {{p_K}\left( {{\tau _0} + {\omega _0}\theta } \right)C\left( {{\omega _0}\theta } \right)} \right]{\rm{d}}\theta } , \end{array} $

不妨设

$ \begin{array}{l} u_0^{\frac{1}{2}}2\left( {\frac{1}{a}\varphi ( + \infty ) - \frac{1}{b}\varphi ( - \infty )} \right) > \\ \sigma \omega _0^{\frac{3}{2}}u_0^{\frac{1}{2}}\int_0^{2{\rm{ \mathsf{ π} }}} {\left[ {{p_K}\left( {{\tau _0} + {\omega _0}\theta } \right)C\left( {{\omega _0}\theta } \right)} \right]{\rm{d}}\theta } , \end{array} $

l - 1(u0, τ0) < 0,

$ \begin{array}{l} {{\bar l}_1}\left( {{u_0},{\tau _0}} \right) < 0,\\ \frac{{\partial {{\bar l}_1}}}{{\partial {u_0}}}\left( {{u_0},{\tau _0}} \right) = - u_0^{ - \frac{1}{2}}\left( {\frac{1}{a}\varphi ( + \infty ) - \frac{1}{b}\varphi ( - \infty )} \right) + \\ \frac{{\sigma \omega _0^{\frac{3}{2}}u_0^{\frac{1}{2}}}}{2}\int_0^{2{\rm{ \mathsf{ π} }}} {\left[ {{p_K}\left( {{\tau _0} + {\omega _0}\theta } \right)C\left( {{\omega _0}\theta } \right)} \right]{\rm{d}}\theta } < 0。\end{array} $

$ \begin{array}{l} I\left( {{u_0},{\tau _0}} \right) = u_0^{\frac{1}{2}}\left[ {2\left( {\frac{1}{a}\varphi ( + \infty ) - \frac{1}{b}\varphi ( - \infty )} \right) - } \right.\\ {\left. {\sigma \omega _0^{\frac{3}{2}}\int_0^{2{\rm{ \mathsf{ π} }}} {\left[ {{p_K}\left( {{\tau _0} + {\omega _0}\theta } \right)C\left( {{\omega _0}\theta } \right)} \right]{\rm{d}}\theta } } \right]^{ - 1}}, \end{array} $

$ \begin{array}{l} \frac{{\partial I}}{{\partial {\tau _0}}}\left( {{u_0},{\tau _0}} \right) = \\ u_0^{\frac{1}{2}}\sigma \omega _0^{\frac{3}{2}}\int_0^{2{\rm{ \mathsf{ π} }}} {\left[ {p_K^\prime \left( {{\tau _0} + {\omega _0}\theta } \right)C\left( {{\omega _0}\theta } \right)} \right]{\rm{d}}\theta } \cdot \\ \left[ {2\left( {\frac{1}{a}\varphi ( + \infty ) - \frac{1}{b}\varphi ( - \infty )} \right) - } \right.\\ {\left. {\sigma {\omega ^{\frac{3}{2}}}\int_0^{2{\rm{ \mathsf{ π} }}} {\left[ {{p_K}\left( {{\tau _0} + {\omega _0}\theta } \right)C\left( {{\omega _0}\theta } \right)} \right]{\rm{d}}\theta } } \right]^{ - 1}}, \end{array} $
$ \begin{array}{l} \frac{{\partial I}}{{\partial {u_0}}}\left( {{u_0},{\tau _0}} \right) = \frac{1}{2}u_0^{ - \frac{1}{2}}\left[ {2\left( {\frac{1}{a}\varphi ( + \infty ) - \frac{1}{b}\varphi ( - \infty )} \right) - } \right.\\ {\left. {\sigma \omega _0^{\frac{3}{2}}\int_0^{2{\rm{ \mathsf{ π} }}} {\left[ {{p_K}\left( {{\tau _0} + {\omega _0}\theta } \right)C\left( {{\omega _0}\theta } \right)} \right]{\rm{d}}\theta } } \right]^{ - 1}}, \end{array} $
$ {{\bar l}_1}\left( {{u_0},{\tau _0}} \right)\frac{{\partial I}}{{\partial {\tau _0}}}\left( {{u_0},{\tau _0}} \right) + {{\bar l}_2}\left( {{u_0},{\tau _0}} \right)\frac{{\partial I}}{{\partial {u_0}}}\left( {{u_0},{\tau _0}} \right) = 0, $

满足了文献[8]中定理3.4的所有条件,因此系统(33)的Poincare映射有拟周期不变曲线,频率为ω1ω2,…,ωn。因此系统(7)有无穷多个拟周期解,且所有解都是有界的。定理证毕。

注2:从定理2的证明过程知,系统(7)有无穷多个拟周期解,其频率为

$ \left( {{\omega _1},{\omega _2}, \cdots ,{\omega _n},\frac{{2{\rm{ \mathsf{ π} }}{\omega _0}}}{{2{\rm{ \mathsf{ π} }}{\omega _0} + \delta \alpha }}} \right), $

其中α满足下面的条件

$ \left| {\langle k,\omega \rangle \frac{{2{\rm{ \mathsf{ π} }}{\omega _0} + \delta \alpha }}{{2\pi }} - j} \right| \ge \frac{{\delta \gamma }}{{{{\left| k \right|}^\tau }}},\;\;\;\;k \in {{\bf{Z}}^n}\backslash \left\{ 0 \right\},j \in {\bf{Z}}, $
$ \alpha \in \left[ {\mathit{\Omega }\left( 1 \right) + {{12}^{ - 3}}\gamma ,\mathit{\Omega }\left( 2 \right) - {{12}^{ - 3}}\gamma } \right], $

其中$\Omega (h) = 2\pi {\omega _0}/\int_0^{2\pi {\omega _0}} {\frac{{{\rm{d}}x}}{{\bar l(x, Y(x, h))}}}, Y(x, h)$I(x, Y)=h的解,常数γδ充分小。

致谢: 本文的研究和写作过程中,朴大雄教授给予了悉心地指导,并提出了很多宝贵意见,作者在此向他表示诚挚的谢意。

AMS Subject Classification: 34C11;34C27;37E40;37J40

参考文献
[1]
Dancer E N. On the Dirichlet problem for weekly nonlinear partial differential equations[J]. Proc Roy Soc Edinburgh, 1977, 76: 283-300. (0)
[2]
Fucik S. Solvability of Nonlinear Equations and Boundary Value Problem[M]. Boston: Reiedel Dodrecht, 1981. (0)
[3]
Ortega R. Asymmetric oscillators and twist mappings[J]. J Lond Math Soc, 1996, 53(2): 325-342. DOI:10.1112/jlms/53.2.325 (0)
[4]
Alonso M J, Ortega R. Roots of unity and unbounded motions of an asymmetric oscillator[J]. J Differ Equ, 1998, 143(1): 201-220. (0)
[5]
Liu B. Boundedness in asymmetric oscillations[J]. J Math Anal Appl, 1999, 231(2): 355-373. DOI:10.1006/jmaa.1998.6219 (0)
[6]
Fabry C. Behavior of forced asymmetric oscillators at resonance[J]. Elec J Differ Equ, 2000, 74: 283-299. (0)
[7]
Liu B. Invariant curves of quasi-periodic reversible mappings[J]. Nonlinearity, 2004, 18(2): 685-701. (0)
[8]
Huang P, Li X, Liu B. Quasi-periodic solutions for an asymmetric oscillations[J]. Nonlinearity, 2016, 29(10): 3006-3030. DOI:10.1088/0951-7715/29/10/3006 (0)
[9]
Wang X. Invariant tori and boundedness in asymmetric oscillations[J]. Acta Math Sinica English Series, 2003, 19(4): 765-782. DOI:10.1007/s10114-003-0249-3 (0)
[10]
Jiao L, Piao D, Wang Y. Boundedness for the general semilinear Duffing equations via the twist theorem[J]. J Differ Equa, 2012, 252(1): 91-113. (0)
Quasi-Periodic Solutions for Duffing Equation with Jumping Term
ZHANG Xin-Li     
1. School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China;
2. School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
Abstract: In this paper, we study a type of Duffing equation which has asymmetric term and jumping nonlinearity. When the perturbation term is a smooth quasi-periodic function, we prove the boundedness of all solutions and the existence of quasi-periodic solutions for the equation by canonical transformations and the invariant curve theorem for smooth quasi-periodic twist mappings.
Key words: Duffing equation    quasi-periodic solutions    twist mappings    invariant curves