2. 青岛海洋科学与技术国家实验室,海洋渔业科学与食物产出过程功能实验室,山东 青岛 266071
争斗残食行为已成为制约甲壳动物集约化养殖发展的重要瓶颈。“争斗行为”最早由Scott和Fredericson于1951年提出,是指同种动物个体间为获得或持有食物、配偶或庇护所等资源在相遇时发生的争抢和打斗行为[1-4]。争斗行为是种内竞争的一个重要方面,可以让获胜者获得更多的资源,以提高生存和福利条件[5]。目前,关于甲壳动物争斗行为的研究多来自国外报道,研究方法以拍摄观察为主,通过分析所拍摄的视频,量化争斗行为要素,分辨争斗胜负,比较争斗强度、争斗策略和争斗持久度等参数[6-9],并结合生理代谢[10-12]和相关基因[13-14]的表达,阐明甲壳动物争斗行为发生的生理机制。相关研究主要聚焦在环境因素(如温度、溶氧、光照等)和非环境因素(如规格、密度、资源价值、前期争斗经验)对其争斗行为的影响及生理机制探讨。
1 影响甲壳动物争斗行为的因素 1.1 环境因素 1.1.1 温度温度是水生生态系统重要的生态因子之一,对水生动物的行为有重要影响[15-17]。研究发现,不适的温度会增加动物的攻击动机,导致争斗行为发生[18]。高温会引发愤怒和敌意情绪,增加暴力和争斗发生概率,如随着温度的升高,生性好斗的美洲螯龙虾(Homarus americanus)更加大胆,争斗倾向增加[19]。而克氏原螯虾(Procambarus clarkii)和锯缘青蟹(Scylla serrata)的争斗行为不受温度影响[6, 20]。此外,温度通过影响甲壳动物的心率和机体代谢率[21-22]间接干扰争斗行为。
1.1.2 溶解氧溶解氧通过改变甲壳动物的呼吸代谢影响其争斗行为。如较低的溶氧水平影响寄居蟹(Pagurus bernhardus)的呼吸代谢率,降低其寻找定居点和庇护所以及发现捕食者和食物的能力,进而降低其争斗能力[23]。甲壳动物的争斗行为需要能量支持,缺氧对争斗过程中攻击者的影响要大于防御者,这是由于攻击者在争斗过程中所需能量更多[24]。对普通滨蟹(Carcinus maenas)的研究表明,低氧胁迫下蟹体内无氧代谢产物积累迅速,导致争斗持续时间缩短,争斗强度降低。这是由于在缺氧状态下,甲壳动物的代谢成本更高,争斗活动所需能量供应受到限制,长时间争斗所需的能量成本超出了争斗收益,因此,甲壳动物通过降低争斗时间以为其他活动(如躲避捕食者)节省能量[9]。
1.1.3 光照光照会对甲壳动物争斗行为产生一定的影响。光照时间增加或光照强度减弱导致巨大拟滨蟹(Pseudocarcinus gigas)争斗加剧、残食增加[25];生活在弱光环境下的克氏原螯虾种内争斗行为受光照周期的影响[26],完全黑暗和高强光照环境引起其不安情绪进而引发争斗[27]。
1.2 非环境因素 1.2.1 规格规格影响甲壳动物争斗持续的时间和强度。如规格(甲壳宽、体重)相当的蟹争斗激烈,争斗强度和持续时间高于规格差异较大的蟹[28],此时双方遭受的损失也大,导致捕食时间下降和捕食效率降低等[29-30];在雌性天鹅绒蟹(Necora puber)争斗过程中,大规格个体通常获胜,但如争斗双方规格均匀匹配,争斗持续时间则减少[31];大规格滨蟹因具较高的攻击性,更能占据主导地位[32];大规格沙蟹(Liocarcinus depurator)间的争斗持续时间要长于小规格个体[33]。此外,螯足规格与争斗能力有关,如具较大螯足的雌性欧洲溪蟹(Potamon fluviatile)易在争斗中取胜[34];当螯足规格相当时,其争斗持续时间增加[8]。当蟹的对称性器官(如左右螯足、步足等)出现缺失或规格和形态不对称,也会影响争斗行为。如滨蟹螯足规格的不对称不会影响争斗胜负,但第五步足规格的不对称却会降低其获胜概率,这可能与第五步足具有维持身体稳定和平衡作用有关[35]。
1.2.2 性别性别对甲壳动物争斗表现有显著影响。雄性滨蟹间的争斗强度要高于雌性,同性别个体间的争斗概率高于异性[10];雄性拟穴青蟹(Scylla paramamosain)个体在与异性的争斗中更易获胜,这与雌雄个体间的螯足特征和生理状态差异有关[30]。此外,性激素也会影响争斗行为,如在雌性浸泡过的海水中,雄性天鹅绒蟹间的争斗持续时间要长于无雌性浸泡海水组[36]。
1.2.3 种群密度种群密度增加因加剧了甲壳动物个体间的相遇率和对有限资源的争夺,增加了争斗发生的概率。高密度养殖条件下,中国明对虾(Fenneropenaeus chinensis)间的争斗显著高于低密度养殖条件,且争斗更为强烈[37];夜间成熟的滨蟹随潮水游向岸边寻找食物,因大量聚集,增加了争斗行为的发生[38]。
1.2.4 猎物资源猎物资源价值通过改变甲壳动物的争斗动机而影响争斗。猎物资源量的增加降低了甲壳动物的争斗强度,减少残食发生[39];随着贻贝(Mytilus edulis)密度的降低,滨蟹间争斗持续时间逐渐提高[28]。将贻贝提取液加入雄性滨蟹生存的环境中,其争斗持续时间缩短,这可能与滨蟹感知到无“真正的”猎物有关[10],说明蟹的争斗表现与其感知的资源价值有关。此外,甲壳动物的争斗行为还与猎物种类有关,如投喂活体饵料比人工饵料更容易引起中国明对虾的争胜行为发生[40]。
1.2.5 前期争斗经验前期争斗经验对甲壳动物的争斗行为有一定影响。争斗失败降低了甲壳动物再次参与争斗的意愿,而胜利者更容易再次参与争斗[41]。如曾参与过争斗的天鹅绒蟹再次与竞争者相遇后,更倾向发起争斗[12]。前期争斗经验还会影响争斗的结果,争斗的胜利者在第二次争斗时更易获得胜利,失败者更易再次失败,这种现象被称为赢家效应。如,对隆背张口蟹(Chasmagnathus convexus)来说,争斗的失败者相较于胜利者在第二次争斗时更易处于劣势地位[42]。赢家效应与再次参与争斗的间隔时间密切相关。Bergman等[43]研究发现,随着再次争斗间隔时间的延长,锈斑龙虾(Orconectes rusticus)的赢家效应逐渐降低,其获胜概率减少。
2 甲壳动物争斗行为的调控机理 2.1 能量代谢能量是细胞各项理化活动正常进行的基础,影响生物的存活、生长和生理功能,在动物响应外界环境变化时发挥重要作用。甲壳动物的争斗行为,被认为是一种“能量消耗的战争”,动物个体的能量代谢状况决定其争斗策略、争斗成本和争斗结果,获胜个体消耗的能量更多,新陈代谢水平更高[11, 44]。争斗所需的能量由体内葡萄糖和组织中存储的糖原构成。外部刺激和机体生理状态影响血淋巴中葡萄糖水平的变化,可反映机体潜在的争斗能力。如,寄居蟹争斗过程中葡萄糖浓度升高,表明充足的能量储备可能是决定个体争斗获胜的关键因素[45],但天鹅绒蟹血淋巴和组织中葡萄糖的水平不受争斗行为影响[7]。这表明不同物种间血糖含量与争斗行为表现的关系存在种间差异。
在争斗起始阶段或较为激烈时的能量需求大部分是由无氧呼吸满足的,而能量供给水平的下降,会导致甲壳动物攻击性降低,从而降低争斗时获胜的概率[11, 45]。然而,生物体通过无氧代谢的供能效率低于有氧代谢,仅能用于暂时的能量补充。糖酵解是动物细胞内重要的供能活动之一,在氧气缺乏尤其剧烈争斗时,甲壳动物通过糖酵解作用获取能量的重要性增强[46]。
乳酸是无氧呼吸的重要代谢产物之一。争斗引起的血淋巴乳酸水平的提高已在滨蟹、寄居蟹和招潮蟹(Ucalacteal perplexa)等的研究中得以证实[11, 35, 45]。随着无氧呼吸的进行,乳酸的积累以及糖原存储的耗尽,可能会限制随后的活动。例如,随着乳酸积聚,滨蟹间争斗持续的时间受限制[10];寄居蟹的攻击性逐渐降低,敲击对方贝壳的频率逐渐下降[11]。此外,体内乳酸积累量还会影响甲壳动物在争斗中的优势地位,如争斗中胜出的寄居蟹体内乳酸含量要低于失败者[45]。
2.2 神经递质甲壳动物的争斗行为受神经递质和激素等调控。不同争斗能力的克氏原螯虾体内神经递质含量不同,而神经递质含量的变化影响个体的争斗能力[47]。其中,5-羟色胺(5-HT)系统与争斗行为关系密切。研究表明,5-羟色胺水平的升高降低了脊椎动物的攻击性[48],章鱼胺能够刺激昆虫间的打斗[49]。但在甲壳动物争斗过程中,高浓度的5-羟色胺通常与争斗优势者相关,而高浓度的章鱼胺则与劣势者相关[50]。如注射5-羟色胺后,龙虾和铠甲虾(Munida quadrispina)展现出与优势龙虾相似的姿势,而注射章鱼胺后则展现出与劣势者相似的姿势[51-52]。这说明在动物进化过程中,生物胺系统对行为的指示作用发生了转变。
同时,5-羟色胺系统和能量代谢系统间也存在诸多联系。5-羟色胺通过不同亚型的5-羟色胺受体(5-HTR)调节动物肝糖原的合成和骨骼肌的能量代谢[53]。基于5-羟色胺系统与能量代谢系统的内在联系,以及二者对甲壳动物争斗行为的影响,探究5-羟色胺和能量代谢系统对甲壳动物争斗行为的双重调控作用十分必要。
2.3 争斗基因甲壳动物争斗行为与遗传因素的关系成为关注的热点。但对甲壳动物争斗行为相关基因的研究更多的借鉴哺乳动物。对模式生物的研究证实,5-HT受体、脑源性神经营养因子(BDNF)、NMDA受体和FK506结合蛋白(FKBP5)等编码基因[54-56]以及miR-34、miR-iab4等非编码基因[57-58]影响动物的社交、认知和争斗等行为。有关甲壳动物争斗行为的相关基因研究有零星报道。徐泽文等[13]克隆了中华绒螯蟹(Eriocheir sinensis)5-HT1和5-HT2受体基因片段。其中,敲除与争斗行为关系密切的5-HT1B和5-HT2A受体基因时,动物的攻击行为增加[59]。
代谢活动对甲壳动物行为的影响离不开转录或转录后水平上的调控,单胺氧化酶基因通过调节多种神经递质水平影响争斗行为,其中单胺氧化酶A基因(MAOA)的表达与5-羟色胺和去甲肾上腺素的降解有关,单胺氧化酶B基因(MAOB)的表达则与多巴胺降解有关[60]。儿茶酚胺氧位甲基转移酶(COMT)在儿茶酚胺类递质代谢中起关键作用,是多巴胺的主要代谢酶,经甲基化催化儿茶酚胺降解,通过控制突触中多巴胺的代谢以调控甲壳动物的争斗行为[61]。朱芳等[14]的研究表明,儿茶酚胺氧位甲基转移酶基因的表达水平与三疣梭子蟹(Portunus trituberculatus)攻击性直接相关,并影响中枢神经系统对争斗行为的调控。
3 展望 3.1 甲壳动物争斗行为量化争斗行为已成为制约我国甲壳动物集约化养殖提质增效的瓶颈,目前我国在该领域的研究鲜有涉及,更缺乏系统全面的量化研究。因此,系统开展甲壳动物争斗行为的量化研究,查明争斗行为与环境和非环境因素的关系,优化养殖设施,构建环境/非环境—争斗行为的双向预警模型,推动产业绿色发展十分必要。
3.2 甲壳动物争斗行为调控机理能源物质是动物生命活动的源泉,也是反映甲壳动物争斗能力的重要标志物,但其与争斗行为的关系尚无明确定论。神经递质和激素对甲壳动物争斗行为的调控也存在种间差异,其调控机理尚不清晰。虽然已有的研究工作为认知代谢活动与甲壳动物争斗行为的关系积累了丰富资料,但仅涉及几种代谢物质,对甲壳动物争斗行为的代谢生理机制缺少系统认知,亟须开展相关研究以全面揭示争斗行为的代谢生理机制。
近年来,我国在甲壳动物研究中虽已获得大量基因资源,但关注点并未涉及争斗行为,这导致对甲壳动物争斗行为调控的认识存在诸多“灰色地带”,这也造成了基因功能认识的缺失,产生基因资源的隐性浪费,更对基于基因功能选育新品种形成制约。随着分子生物学技术的发展,将争斗过程中占有优势地位的个体与甲壳动物群体的基因表达谱联系起来,开展分子水平下的争斗行为调控机制研究尤为重要。
[1] |
Scott J P, Fredericson E. The causes of fighting in mice and rats[J]. Physiological Zoology, 1951, 24(4): 273-309. DOI:10.1086/physzool.24.4.30152137
( ![]() |
[2] |
Abele L G, Campanella P J, Salmon M. Natural history and social organization of the semiterrestrial grapsid crab Pachygrapsus transversus(Gibbes)[J]. Journal of Experimental Marine Biology & Ecology, 1986, 104(1): 153-170.
( ![]() |
[3] |
Glass C W, Huntingford F A. Initiation and resolution of fights between swimming crabs (Liocarcinus depurator)[J]. Ethology, 2010, 77(3): 237-249.
( ![]() |
[4] |
刘秀霞, 沈涓, 周红, 等. 动物攻击行为的研究进展[J]. 中国畜牧兽医, 2009, 36(4): 196-200. Liu X X, Shen J, Zhou H, et al. The Research development of animal aggressive behavior[J]. China Animal Husbandry and Veterinary Medicine, 2009, 36(4): 196-200. ( ![]() |
[5] |
Xu X M, Chi Q S, Cao J, et al. The effect of aggression Ⅰ: The increases of metabolic cost and mobilization of fat reserves in male striped hamsters[J]. Hormones & Behavior, 2018, 98: 55-62.
( ![]() |
[6] |
Gherardi F, Coignet A, Soutygrosset C, et al. Climate warming and the agonistic behaviour of invasive crayfishes in Europe[J]. Freshwater Biology, 2013, 58(9): 1958-1967.
( ![]() |
[7] |
Thorpe K E, Huntingford F A, Taylor A C. Relative size and agonistic behaviour in the female velvet swimming crab, Necora puber (L.) (Brachyura, Portunidae)[J]. Behavioural Processes, 1994, 32(3): 235.
( ![]() |
[8] |
Smallegange I M, Jaap V D M. Interference from a game theoretical perspective: Shore crabs suffer most from equal competitors[J]. Behavioral Ecology, 2007, 18(1): 215-221.
( ![]() |
[9] |
Sneddon L U, Taylor A C, Huntingford F A. Metabolic consequences of agonistic behaviour: Crab fights in declining oxygen tensions[J]. Animal Behaviour, 1999, 57(2): 353-363.
( ![]() |
[10] |
Sneddon L U, Huntingford F A, Taylor A C. The influence of resource value on the agonistic behaviour of the shore crab, Carcinus maenas (L.)[J]. Marine Behaviour & Physiology, 1997, 30(4): 225-237.
( ![]() |
[11] |
Briffa M, Elwood R W. Use of energy reserves in fighting hermit crabs[J]. Proceedings Biological Sciences, 2011, 271(1537): 373.
( ![]() |
[12] |
Thorpe K E, Taylor A C, Huntingford F A. How costly is fighting? Physiological effects of sustained exercise and fighting in swimming crabs, Necora puber(L.) (Brachyura, Portunidae)[J]. Animal Behaviour, 1995, 50(6): 1657-1666.
( ![]() |
[13] |
徐泽文, 杨筱珍, 黄坚, 等. CODEHOP法设计引物克隆中华绒螯蟹5-ht_1和5-ht_2受体基因片段及序列分析[J]. 生物学杂志, 2015, 32(1): 1-5. Xu Z W, Yang X Z, Huan J, et al. CODEHOP PCR primers for cloning 5-ht1 and5-ht2 receptor fragments in Eriocheir sinensis[J]. Journal of Biology, 2015, 32(1): 1-5. ( ![]() |
[14] |
Zhu F, Fu Y, Mu C, et al. Molecular cloning, characterization and effects of catechol-o-methyltransferase (comt) mRNA and protein on aggressive behavior in the swimming crab Portunus trituberculatus[J]. Aquaculture, 2018, 495: 693-702.
( ![]() |
[15] |
Thomas C W, Crear B J, Hart P R. The effect of temperature on survival, growth, feeding and metabolic activity of the southern rock lobster, Jasus edwardsii[J]. Aquaculture, 2000, 185(1): 73-84.
( ![]() |
[16] |
Lyon J P, Ryan T J, Scroggie M P. Effects of temperature on the fast-start swimming performance of an Australian freshwater fish[J]. Ecology of Freshwater Fish, 2010, 17(1): 184-188.
( ![]() |
[17] |
Biro P A, Beckmann C, Stamps J A. Small Within-Day Increases in temperature affects boldness and alters personality in coral reef fish[J]. Proceedings Biological Sciences, 2010, 277(1678): 71-77.
( ![]() |
[18] |
Anderson C A, Anderson K B, Dorr N, et al. Temperature and aggression[J]. Advances in Experimental Social Psychology, 2000, 32(1): 63-133.
( ![]() |
[19] |
Hoffman R S, Dunham P J, Kelly P V. Effects of water temperature and housing conditions upon the aggressiv[J]. Journal of the Fisheries Research Board of Canada, 1975, 32(5): 713-717.
( ![]() |
[20] |
Matheson K, Gagnon P. Effects of temperature, body size, and chela loss on competition for a limited food resource between indigenous rock crab (Cancer irroratus Say) and recently introduced green crab (Carcinus maenas L.)[J]. Journal of Experimental Marine Biology & Ecology, 2012, 428(428): 49-56.
( ![]() |
[21] |
Iftikar F I, Macdonald J, Hickey A J R. Thermal limits of portunid crab heart mitochondria: Could more thermo-stable mitochondria advantage invasive species?[J]. Journal of Experimental Marine Biology & Ecology, 2010, 395(1): 232-239.
( ![]() |
[22] |
González R A, Díaz F, Licea A, et al. Thermal preference, tolerance and oxygen consumption of adult white shrimp Litopenaeus vannamei (Boone) exposed to different acclimation temperatures[J]. Journal of Thermal Biology, 2010, 35(5): 218-224.
( ![]() |
[23] |
Briffa M, Haye K D L, Munday P L. High CO2 and marine animal behaviour: Potential mechanisms and ecological consequences[J]. Marine Pollution Bulletin, 2012, 64(8): 1519-1528.
( ![]() |
[24] |
Briffa M, Elwood R W. Cumulative or sequential assessment during hermit crab shell fights: Effects of oxygen on decision rules[J]. Proc Biol Sci, 2000, 267(1460): 2445-2452.
( ![]() |
[25] |
Gardner C, Maguire G B. Effect of photoperiod and light intensity on survival, development and cannibalism of larvae of the Australian giant crab Pseudocarcinus gigas (L.)[J]. Aquaculture, 1998, 165(1/2): 51-63.
( ![]() |
[26] |
Farca Luna A J, Hurtado-Zavala J I, Reischig T, et al. Circadian regulation of agonistic behavior in groups of parthenogenetic marbled crayfish, Procambarus sp.[J]. Journal of Biological Rhythms, 2009, 24(1): 64.
( ![]() |
[27] |
李佳佳, 张怡宁, 陈翔宇, 等. 光照强度对克氏原螯虾格斗行为的影响[J]. 水产科技情报, 2014, 41(1): 14-16. Li J J, Zhang Y N, Chen X Y, et al. Effect of light intensity on fighting behavior of Procambarus clarkia[J]. Fisheries Science & Technology Information, 2014, 41(1): 14-16. ( ![]() |
[28] |
Smallegange I M, Sabelis M W, van der Meer J. Assessment games in shore crab fights[J]. Journal of Experimental Marine Biology and Ecology, 2007, 351(1): 255-266.
( ![]() |
[29] |
Huntingford F A, Taylor A C, Smith I P, et al. Behavioural and physiological studies of aggression in swimming crabs[J]. Journal of Experimental Marine Biology & Ecology, 1995, 193(1-2): 21-39.
( ![]() |
[30] |
Beattie C L, Pitt K A, Connolly R M. Both size and gender of mud crabs influence the outcomes of interference interactions[J]. Journal of Experimental Marine Biology & Ecology, 2012, 434-435(6): 1-6.
( ![]() |
[31] |
Thorpe K E, Huntingford F A, Taylor A C. Relative size and agonistic behaviour in the female velvet swimming crab, Necora puber (L.) (Brachyura, Portunidae)[J]. Behavioural Processes, 1994, 32(3): 235.
( ![]() |
[32] |
Meeren G I V D. Sex-and size-dependent mating tactics in a natural population of shore crabs Carcinus maenas[J]. Journal of Animal Ecology, 1994, 63(2): 307-314.
( ![]() |
[33] |
Glass C W, Huntingford F A. Initiation and resolution of fights between swimming crabs (Liocarcinus depurator)[J]. Ethology, 2010, 77(3): 237-249.
( ![]() |
[34] |
Gabbanini F, Gherardi F, Vannini M. Force and dominance in the agonistic behavior of the freshwater crab Potamon fluviatile[J]. Aggressive Behavior, 2010, 21(6): 451-462.
( ![]() |
[35] |
Sneddon L U, Swaddle J P. Asymmetry and fighting performance in the shore crab Carcinus maenas[J]. Animal Behaviour, 1999, 58(2): 431-435.
( ![]() |
[36] |
Smith I P, Huntingford F A, Atkinson R J A, et al. Mate competition in the velvet swimming crab Necora puber: Effects of perceived resource value on male agonistic behaviour[J]. Marine Biology, 1994, 120(4): 579-584.
( ![]() |
[37] |
李玉全, 孙霞. 水生动物的争胜行为[J]. 动物学研究, 2013, 34(3): 214-220. Li YQ, Sun X. Agonistic behaviors of aquatic animals[J]. Zoological Research, 2013, 34(3): 214-220. ( ![]() |
[38] |
Kitching J A, Sloane J F, Ebling F J. The Ecology of lough ine: Ⅷ. mussels and their predators[J]. Journal of Animal Ecology, 1959, 28(2): 331-341.
( ![]() |
[39] |
Romano N, Zeng C. Cannibalism of decapod crustaceans and implications for their aquaculture: A review of its prevalence, influencing factors, and mitigating methods[J]. Reviews in Fisheries Science, 2017, 25(1): 42-69.
( ![]() |
[40] |
秦浩, 李玉全. 生存密度和饵料对中国明对虾(Fenneropenaeus chinensis)争胜行为和生长性能的影响[J]. 海洋与湖沼, 2014, 45(4): 834-838. Qin H, Li Y Q. The effects of stocking density and food on agonistic behavior and growth performance in fenneropena[J]. Oceanologia Et Limnologia Sinica, 2014, 45(4): 834-838. ( ![]() |
[41] |
Hsu Y, Earley R L, Wolf L L. Modulation of aggressive behaviour by fighting experience: Mechanisms and contest outcomes[J]. Biological Reviews, 2010, 81(1): 33-74.
( ![]() |
[42] |
Kaczer L, Pedetta S, Maldonado H. Aggressiveness and memory: Subordinate crabs present higher memory ability than dominants after an agonistic experience[J]. Neurobiology of Learning & Memory, 2007, 87(1): 140-148.
( ![]() |
[43] |
Bergman D A, Huber R, Moore P A. Temporal dynamics and communication of winner-effects in the crayfish, Orconectes rusticus[J]. Behaviour, 2003, 140(6): 805-825.
( ![]() |
[44] |
Briffa M, Sneddon L U. Physiological constraints on contest behaviour[J]. Functional Ecology, 2007, 21(4): 627-637.
( ![]() |
[45] |
Briffa M, Elwood R W. Use of energy reserves in fighting hermit crabs[J]. Proceedings Biological Sciences, 2011, 271(1537): 373.
( ![]() |
[46] |
Abe H, Hirai S, Okada S. Metabolic responses and arginine kinase expression under hypoxic stress of the kuruma prawn Marsupenaeus japonicus[J]. Comparative Biochemistry & Physiology Part A Molecular & Integrative Physiology, 2007, 146(1): 40-46.
( ![]() |
[47] |
Huber R, Panksepp J B, Yue Z, et al. Dynamic interactions of behavior and amine neurochemistry in acquisition and maintenance of social rank in crayfish[J]. Brain, Behavior and Evolution, 2001, 57(5): 271-282.
( ![]() |
[48] |
Saudou F, Amara D A, Dierich A, et al. Enhanced aggressive behavior in mice lacking 5-HT1B receptor[J]. Science, 1994, 265(5180): 1875-1878.
( ![]() |
[49] |
Stevenson P A, Dyakonova V, Rillich J, et al. Octopamine and experience-dependent modulation of aggression in crickets[J]. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 2005, 25(6): 1431.
( ![]() |
[50] |
Kravitz E A. Hormonal control of behavior: Amines and the biasing of behavioral output in lobsters[J]. Science, 1988, 241(4874): 1775-1781.
( ![]() |
[51] |
Livingstone M S, Harris-Warrick R M, Kravitz E A. Serotonin and octopamine produce opposite postures in lobsters[J]. Science, 1980, 208(4439): 76-79.
( ![]() |
[52] |
Antonsen B L, Paul D H. Serotonin and octopamine elicit stereotypical agonistic behaviors in the squat lobster Munida quadrispina (Anomura, Galatheidae)[J]. Journal of Comparative Physiology A, 1997, 181(5): 501-510.
( ![]() |
[53] |
Laporta J, Peters T L, Merriman K E, et al. Serotonin (5-HT) affects expression of liver metabolic enzymes and mammary gland glucose transporters during the transition from pregnancy to lactation[J]. Plos One, 2013, 8(2): 269-284.
( ![]() |
[54] |
Grova N, Valley A, Turner J D, et al. Modulation of behavior and NMDA-R1 gene mRNA expression in adult female mice after sub-acute administration of benzo(a)pyrene[J]. Neurotoxicology, 2007, 28(3): 630-636.
( ![]() |
[55] |
Hartmann J, Wagner K V, Liebl C, et al. The involvement of FK506-binding protein 51 (FKBP5) in the behavioral and neuroendocrine effects of chronic social defeat stress[J]. Neuropharmacology, 2012, 62(1): 332-339.
( ![]() |
[56] |
Roullet F I, Wollaston L, Decatanzaro D, et al. Behavioral and molecular changes in the mouse in response to prenatal exposure to the anti-epileptic drug valproic acid[J]. Neuroscience, 2010, 170(2): 514-522.
( ![]() |
[57] |
Picao-Osorio J, Johnston J, Landgraf M, et al. MicroRNA-encoded behaviour in drosophila[J]. Science, 2015, 350(6262): 815.
( ![]() |
[58] |
Andolina D, Di M S, Accoto A, et al. MicroRNA-34 contributes to the stress-related behavior and affects 5-HT prefrontal/GABA amygdalar system through regulation of corticotropin-releasing factor receptor 1[J]. Molecular Neurobiology, 2018(1): 1-12.
( ![]() |
[59] |
de Boer S F, Koolhaas J M. 5-HT1A and 5-HT1B receptor agonists and aggression: A pharmacological challenge of the serotonin deficiency hypothesis[J]. European Journal of Pharmacology, 2005, 526(1): 125-139.
( ![]() |
[60] |
刘华锋. 5-HT和MAOA基因多态性与攻击行为的关联性及营养素干预的实验研究[D].长森: 吉林大学, 2010. Liu H F. Association Between 5-HT/MAOA Gene Polymorphisms and Aggressive Behavior and Experimental Study of Nutrient Intervention[D]. Changchun: Jilin University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10183-2010106776.htm ( ![]() |
[61] |
张钦廷, 赵敏, 谢斌. COMT基因与精神分裂症患者暴力攻击行为关联性的研究进展[J]. 法医学杂志, 2014, 30(3): 197-201. Zhang Q T, Zhao M, Xie B. Progress on association between COMT gene and violence behavior in patients with schizophrenia[J]. Journal of Forensic Medicine, 2014, 30(3): 197-201. ( ![]() |
2. Function Laboratory for Marine Fisheries Science and Food Output Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China