中国海洋大学学报自然科学版  2019, Vol. 49 Issue (1): 134-138  DOI: 10.16441/j.cnki.hdxb.20160122

引用本文  

马羚未, 方钟波. 具有加权梯度源项的半线性抛物方程解的爆破时间下界[J]. 中国海洋大学学报(自然科学版), 2019, 49(1): 134-138.
MA Ling-Wei, FANG Zhong-Bo. Lower Bounds for a Semi-linear Parabolic Equation with Weighted Gradient Source Term[J]. Periodical of Ocean University of China, 2019, 49(1): 134-138.

基金项目

山东省研究生创新计划项目(SDYY14127)资助
Supported by the Innovation Program for Graduates of Shandong Province (SDYY14127)

通讯作者

方钟波, E-mail:fangzb7777@hotmail.com

作者简介

马羚未(1991-),女,硕士生

文章历史

收稿日期:2016-04-05
修订日期:2017-06-11
具有加权梯度源项的半线性抛物方程解的爆破时间下界
马羚未 , 方钟波     
中国海洋大学数学科学学院,山东 青岛 266100
摘要:本文中研究具有加权梯度源项的半线性抛物方程Dirichlet初边值问题解的爆破时间下界。当解爆破发生时,利用修正微分不等式技巧,在高维空间中适当的加权测度意义下导出解的爆破时间下界估计,并给出应用举例。
关键词半线性抛物方程    加权函数    梯度项    爆破时间的下界    

迄今为止,已有许多学者致力于抛物型方程解的整体存在性与爆破现象及定性性质方面的研究,且已有许多专著和综述性的成果(见文献[1-4])。特别是,Quittner和Souplet专著[2,第3, 4章]中详细介绍了具有Dirichlet边界条件和常系数a的反应-扩散模型中解的定性性质。粗略地概括,爆破的发生以及类型依赖于常数系数a,初始值以及区域的选取,且梯度模型的另一个显著特点是在适当的条件下可能发生边界或内部中梯度爆破现象。最近,爆破问题中爆破时间的上下界估计的研究方面有新的进展。实际上,关于抛物型方程解发生爆破时爆破解的爆破时间上界(见文献[5]中六种方法)的技巧较多。然而,爆破解的爆破时间下界一般较难确定且大部分文献限制在三维空间中,主要困难在于Sobolev最优化常数的确定。这里提供给读者参考文献[6-9](不含梯度项), 文献[10-13] (含梯度项)及相关文献。特别地,Marras在文献[11]中研究了如下具有齐次Dirichlet边界条件和梯度源项的半线性抛物型方程组的初边值问题

$ \left\{ \begin{array}{l} {u_t} = \Delta u + {f_1}\left( {\left| {\nabla v} \right|} \right),\left( {x,t} \right) \in \Omega \times \left( {0,{t^ * }} \right),\\ {v_t} = \Delta v + {f_2}\left( {\left| {\nabla u} \right|} \right),\left( {x,t} \right) \in \mathit{\Omega } \times \left( {0,{t^ * }} \right), \end{array} \right. $

并在三维空间中具有光滑边界的凸区域上得到了解发生爆破时爆破时间的下界。

关于具有空变系数的反应模型,Song和Lv[14, 15]最近研究了具有加权内部源项的局部抛物型方程

$ {u_t} = \Delta u + a\left( x \right)f\left( u \right),\left( {x,t} \right) \in \Omega \times \left( {0,{t^ * }} \right), $

其中权函数a(x)∈C2(Ω)∩C0(Ω)且满足条件

$ \begin{array}{l} \left( {{a_1}} \right):a\left( x \right) > 0,x \in \Omega ;a\left( x \right) = 0,x \in \partial \Omega ,或\\ \left( {{a_2}} \right):a\left( x \right) \ge c > 0,\forall x \in \bar \Omega ,或\\ \left( {{a_3}} \right):a\left( x \right) \equiv 0,\forall x \in \bar \Omega ,或\\ \left( {{a_4}} \right):0 < {c_1} < a\left( x \right) < {c_2},\forall x \in \bar \Omega 。\end{array} $

其中cc1c2为正常数。当初边值问题具有非线性Neumann边界条件,且权函数满足(a1)或(a3)或(a4)时,得到了三维空间中问题解发生爆破时爆破时间界的估计(见文献[14])。在文献[15]中,考虑了问题具有齐次Dirichlet和齐次Neumann边界条件且权函数满足(a1)或(a2)的情形,在高维空间中得到了初边值问题解的爆破时间界与爆破速率的估计。

综上所述,在高维空间(N≥3)上具有加权梯度源项的半线性抛物型方程Dirichlet初边值问题解的爆破分析方面的研究还未得到展开。因为方程中含有加权梯度源项,所以微分不等式技巧的应用中遇到困难。本文中,受Marras[11]工作启发,在高维空间中考虑具有加权梯度源项的半线性抛物方程

$ {u_t} = \Delta u + a\left( x \right)f\left( {\left| {\nabla u} \right|} \right),\left( {x,t} \right) \in \mathit{\Omega } \times \left( {0,{t^ * }} \right), $ (1)

给出齐次Dirichlet边界条件和初始条件

$ \begin{array}{*{20}{c}} {u\left( {x,t} \right) = 0,}&{\left( {x,t} \right) \in \partial \Omega \times \left( {0,{t^ * }} \right),} \end{array} $ (2)
$ \begin{array}{*{20}{c}} {u\left( {x,0} \right) = {u_0}\left( x \right),}&{x \in \Omega 。} \end{array} $ (3)

式中:Ω是RN(N≥3)中具有光滑边界Ω的有界凸区域。t*表示可能发生爆破的时间,反之,t*=+∞。非线性项f(|∇u|)为满足适当条件的非负连续函数,权函数a(x)∈C1(Ω)∩C0(Ω)且满足

(a1):a(x)>0,x∈Ω;a(x)=0,xΩ,或者

(a2):a(x)≥c>0,∀xΩ,以及

(a5):-a(x)A≤∇a(x)≤a(x)A$ \Leftrightarrow \left| {\frac{{\partial a\left( x \right)}}{{\partial {x_i}}}} \right|$Aia(x),∀x∈Ω,其中A=(A1, A2, …, AN)是一个正常数向量。

非负初始值u0(x)为C1类连续函数且满足相容性条件。因此,由抛物方程经典理论可知问题(1)~(3)存在唯一的非负古典解。解的最大存在时间t*∈(0, +∞]。此外,若t*<+∞,则u(x, t)以C1-范数意义下在有限时刻发生爆破(见文献[16,定理10, p.206]);即

$ \mathop {\lim }\limits_{t - {t^ * }} \sup \mathop {\sup }\limits_{x \in \bar \Omega } \left( {\left| {u\left( {x,t} \right)} \right| + \left| {\nabla u\left( {x,t} \right)} \right|} \right) = + \infty 。$

模型(1)常常称为具有黏性的Hamilton-Jacobi方程且与物理学理论中描述界面生长及粗化的Kardar- Parisi-Zhang方程有密切联系,见文献[17-18]以及相关文献。本文的目的是在高维空间中适当的加权测度意义下建立问题(1)~(3)解发生爆破时爆破时间下界的估计,并给出应用举例。

1 爆破时间t*的下界

本节中,将在新的加权测度意义下给出问题(1)~ (3)爆破解的爆破时间的下界估计。

定理1令u(x, t)是问题(1)~(3)的非负古典解,且u(x, t)在有限时间t*发生爆破。假设非负函数f(|∇u|)满足

$ \left( {{H_1}} \right):uf\left( {\left| {\nabla u} \right|} \right) \le k{u^{\left( {1 - \beta } \right)\left( {2 + \frac{\gamma }{{N - 2}}} \right)}}{\left| {\nabla u} \right|^{2\beta }}, $

其中正常数k, β, γ满足0<β<1, γ>1且1-≥0。同时,权函数a(x)∈C1(Ω)∩C0(Ω)满足(a1)或(a2),以及(a5)。则在加权L4γ-范数Φ(t)=∫Ωa(x)u4γdx的意义下,爆破时间t*的下界为

$ {t^ * } \ge \int_{\mathit{\Phi }\left( 0 \right)}^\infty {\frac{{{\rm{d}}\eta }}{{{J_1} + {J_2}\eta + {J_3}{\eta ^{\frac{{2N - 3}}{{2\left( {N - 2} \right)}}}} + {J_4}{\eta ^{\frac{{3\left( {N - 2} \right)}}{{3N - 8}}}}}}} , $

其中Φ0=∫Ωa(x)u04γdx,并且J1, J2, J3, J4是下面证明过程中可确定的正常数。

证明:首先,对Φ(t)求微分,并利用(1),(2),Green公式,(H1)以及(a5),可以得到

$ \begin{array}{l} \mathit{\Phi '}\left( t \right) = \\ 4\gamma \int_\Omega {a\left( x \right){u^{4\gamma - 1}}\left( {\Delta u + a\left( x \right)f\left( {\left| {\nabla u} \right|} \right)} \right){\rm{d}}x} = \\ - 4\gamma \int_\Omega {\nabla \left( {a\left( x \right){u^{4\gamma - 1}}} \right) \cdot \nabla u{\rm{d}}x} + \\ 4\gamma \int_\Omega {{{\left( {a\left( x \right)} \right)}^2}{u^{4\gamma - 1}}f\left( {\left| {\nabla u} \right|} \right){\rm{d}}x} \le \\ 4\gamma \left| A \right|\int_\Omega {a\left( x \right){u^{4\gamma - 1}}\left| {\nabla u} \right|{\rm{d}}x} - \\ 4\gamma \left( {4\gamma - 1} \right)\int_\Omega {a\left( x \right){u^{4\gamma - 2}}{{\left| {\nabla u} \right|}^2}{\rm{d}}x} + \\ 4\gamma k\int_\Omega {{{\left( {a\left( x \right)} \right)}^2}{u^{4\gamma - 2}} \times \left( {{u^{\left( {1 - \beta } \right)\left( {2 + \frac{\gamma }{{N - 2}}} \right)}}{{\left| {\nabla u} \right|}^{2\beta }}} \right){\rm{d}}x} 。\end{array} $ (4)

由于0<β<1,现在,对(4)不等号右端最后一项运用Young不等式,导出

$ \begin{array}{l} 4\gamma k\int_\Omega {{{\left( {a\left( x \right)} \right)}^2}{u^{4\gamma - 2}}\left( {{u^{\left( {1 - \beta } \right)\left( {2 + \frac{\gamma }{{N - 2}}} \right)}}{{\left| {\nabla u} \right|}^{2\beta }}} \right){\rm{d}}x} \le \\ 4\gamma k\beta \int_\Omega {a\left( x \right){u^{4\gamma - 2}}{{\left| {\nabla u} \right|}^2}{\rm{d}}x} + \\ 4\gamma k\left( {1 - \beta } \right)\int_\Omega {{{\left( {a\left( x \right)} \right)}^{\frac{{2 - \beta }}{{1 - \beta }}}}{u^{4\gamma + \frac{\gamma }{{N - 2}}}}{\rm{d}}x} 。\end{array} $ (5)

然后,再对(4)不等号右端的第一项运用Hölder不等式以及Young不等式,算出

$ \begin{array}{l} 4\gamma \left| A \right|\int_\Omega {a\left( x \right){u^{4\gamma - 1}}\left| {\nabla u} \right|{\rm{d}}x} \le \\ 4\gamma \left| A \right|{\left( {\int_\Omega {a\left( x \right){u^{4\gamma }}{\rm{d}}x} } \right)^{\frac{1}{2}}} \times \\ {\left( {\int_\Omega {a\left( x \right){u^{4\gamma - 2}}{{\left| {\nabla u} \right|}^2}{\rm{d}}x} } \right)^{\frac{1}{2}}} \le \\ \frac{{2\gamma \left| A \right|}}{{{\varepsilon _1}}}\int_\Omega {a\left( x \right){u^{4\gamma }}{\rm{d}}x} + \\ \frac{{\left| A \right|{\varepsilon _1}}}{{2\gamma }}\int_\Omega {a\left( x \right){{\left| {\nabla {u^{2\gamma }}} \right|}^2}{\rm{d}}x} , \end{array} $ (6)

式中ε1是待定的正常数。

将(5), (6)代入到(4)中,整理得到

$ \begin{array}{l} \mathit{\Phi '}\left( t \right) \le \frac{{2\gamma \left| A \right|}}{{{\varepsilon _1}}}\mathit{\Phi }\left( t \right) + \left[ {\frac{{\left| A \right|{\varepsilon _1}}}{{2\gamma }} + \frac{{{k_3}\beta }}{\gamma } - \frac{{4\gamma - 1}}{\gamma }} \right] \times \\ \int_\Omega {a\left( x \right){{\left| {\nabla {u^{2\gamma }}} \right|}^2}{\rm{d}}x} + \\ 4\gamma k\left( {1 - \beta } \right)\int_\Omega {{{\left( {a\left( x \right)} \right)}^{\frac{{2 - \beta }}{{1 - \beta }}}}{u^{4\gamma + \frac{\gamma }{{N - 2}}}}{\rm{d}}x} 。\end{array} $ (7)

从而,对(7)不等号右端的最后一积分项运用Hölder不等式及Young不等式,可得

$ \begin{array}{l} \int_\Omega {{{\left( {a\left( x \right)} \right)}^{\frac{{2 - \beta }}{{1 - \beta }}}}{u^{4\gamma + \frac{\gamma }{{N - 2}}}}{\rm{d}}x} = \int_\Omega {{{\left( {a\left( x \right)} \right)}^{\frac{{2 - \beta }}{{1 - \beta }}}}{u^{\frac{{4N - 7\gamma }}{{N - 2}}}}{\rm{d}}x} \le \\ {\left( {\int_\Omega {{{\left( {a\left( x \right)} \right)}^{\frac{{2N - 3}}{{2\left( {N - 2} \right)}}}}{u^{\frac{{2\gamma \left( {2N - 3} \right)}}{{N - 2}}}}{\rm{d}}x} } \right)^{\frac{{4N - 7}}{{4N - 6}}}} \times \\ {\left( {\int_\Omega {{{\left( {a\left( x \right)} \right)}^\sigma }{\rm{d}}x} } \right)^{\frac{1}{{4N - 6}}}} \le \\ \frac{{4N - 7}}{{2\left( {2N - 3} \right)}}\int_\Omega {{{\left( {a\left( x \right)} \right)}^{\frac{{2N - 3}}{{2\left( {N - 2} \right)}}}}{u^{\frac{{2\gamma \left( {2N - 3} \right)}}{{N - 2}}}}{\rm{d}}x} + \\ \frac{1}{{2\left( {2N - 3} \right)}}\int_\Omega {{{\left( {a\left( x \right)} \right)}^\sigma }{\rm{d}}x} , \end{array} $ (8)

其中$\sigma {\rm{ = }}\frac{{\left( {2 - \beta } \right)\left( {4N - 6} \right)}}{{1 - \beta }} - \frac{{\left( {4N - 7} \right)\left( {2N - 3} \right)}}{{2\left( {N - 2} \right)}}$

之后,再次利用Hölder不等式,则不等号(8)右端的第一项变为

$ \begin{array}{l} \int_\Omega {{{\left( {a\left( x \right)} \right)}^{\frac{{2N - 3}}{{2\left( {N - 2} \right)}}}}{u^{\frac{{2\gamma \left( {2N - 3} \right)}}{{N - 2}}}}{\rm{d}}x} \le {\left( {\int_\Omega {a\left( x \right){u^{4\gamma }}{\rm{d}}x} } \right)^{\frac{3}{4}}} \times \\ {\left( {\int_\Omega {{{\left( {a\left( x \right)} \right)}^{\frac{N}{{N - 2}}}}{u^{\frac{{4N\gamma }}{{N - 2}}}}{\rm{d}}x} } \right)^{\frac{1}{4}}}。\end{array} $ (9)

由此,运用高维空间N≥3中Sobolev不等式[19]

$ {\left\| {a{{\left( x \right)}^{\frac{1}{2}}}{u^{2\gamma }}} \right\|_{{L^{\frac{{2N}}{{N - 2}}}}\left( \Omega \right)}} \le {C_s}{\left\| {\nabla \left( {a{{\left( x \right)}^{\frac{1}{2}}}{u^{2\gamma }}} \right)} \right\|_{{L^2}\left( \Omega \right)}}, $

其中Cs是Sobolev最优化常数。同时,利用假设(a5)及Jensen不等式,有

$ \begin{array}{l} {\left( {\int_\Omega {{{\left( {a\left( x \right)} \right)}^{\frac{N}{{N - 2}}}}{u^{\frac{{4N\gamma }}{{N - 2}}}}{\rm{d}}x} } \right)^{\frac{1}{4}}} \le \\ C_s^{\frac{N}{{2\left( {N - 2} \right)}}}{\left( {\frac{{{{\left| A \right|}^2}}}{2}} \right)^{\frac{N}{{4\left( {N - 2} \right)}}}}{\left( {\mathit{\Phi }\left( t \right)} \right)^{\frac{N}{{4\left( {N - 2} \right)}}}} + \\ C_s^{\frac{N}{{2\left( {N - 2} \right)}}}{2^{\frac{N}{{4\left( {N - 2} \right)}}}}{\left( {\int_\Omega {a\left( x \right){{\left| {\nabla {u^{2\gamma }}} \right|}^2}{\rm{d}}x} } \right)^{\frac{N}{{4\left( {N - 2} \right)}}}}。\end{array} $ (10)

现在,将(10)代入到(9)中,并利用Young不等式,可以导出

$ \begin{array}{l} \int_\Omega {{{\left( {a\left( x \right)} \right)}^{\frac{{2N - 3}}{{2\left( {N - 2} \right)}}}}{u^{\frac{{2\gamma \left( {2N - 3} \right)}}{{N - 2}}}}{\rm{d}}x} \le {\left( {\frac{{{{\left| A \right|}^2}C_s^2}}{2}} \right)^{\frac{N}{{4\left( {N - 2} \right)}}}} \times \\ {\left( {\mathit{\Phi }\left( t \right)} \right)^{\frac{{2N - 3}}{{2\left( {N - 2} \right)}}}} + \frac{{3N - 8}}{{4\left( {N - 2} \right)\varepsilon _2^{\frac{N}{{3N - 8}}}}}{\left( {\mathit{\Phi }\left( t \right)} \right)^{\frac{{3\left( {N - 2} \right)}}{{3N - 8}}}} + \\ \frac{{NC_s^2{\varepsilon _2}}}{{2\left( {N - 2} \right)}}\int_\Omega {a\left( x \right){{\left| {\nabla {u^{2\gamma }}} \right|}^2}{\rm{d}}x} , \end{array} $ (11)

其中ε2是待定的正常数。

最后,将(8)~(11)代入到(7)中,整理可得

$ \begin{array}{l} \mathit{\Phi '}\left( t \right) \le {J_1} + {J_2}\mathit{\Phi }\left( t \right) + {J_3}{\left( {\mathit{\Phi }\left( t \right)} \right)^{\frac{{2N - 3}}{{2\left( {N - 2} \right)}}}} + \\ {J_4}{\left( {\mathit{\Phi }\left( t \right)} \right)^{\frac{{3\left| {\left( {N - 2} \right)} \right|}}{{3N - 8}}}} + {J_5}\int_\Omega {a\left( x \right){{\left| {\nabla {u^{2\gamma }}} \right|}^2}{\rm{d}}x} , \end{array} $ (12)

其中

$ {J_1} = \frac{{2\gamma k\left( {1 - \beta } \right)}}{{2N - 3}}\int_\Omega {{{\left( {a\left( x \right)} \right)}^\sigma }{\rm{d}}x} , $
$ {J_2} = \frac{{2\gamma \left| A \right|}}{{{\varepsilon _1}}}, $
$ {J_3} = \frac{{2\gamma k\left( {1 - \beta } \right)\left( {4N - 7} \right)}}{{2N - 3}}{\left( {\frac{{{{\left| A \right|}^2}C_s^2}}{2}} \right)^{\frac{N}{{4\left( {N - 2} \right)}}}}, $
$ {J_4} = \frac{{\gamma k\left( {1 - \beta } \right)\left( {4N - 7} \right)\left( {3N - 8} \right)}}{{2\left( {2N - 3} \right)\left( {N - 2} \right)_2^{\frac{N}{{3N - 8}}}}}, $
$ {J_5} = \frac{{k\beta }}{\gamma } + \frac{{\left| A \right|{\varepsilon _1}}}{{2\gamma }} + \frac{{\gamma kNC_s^2\left( {1 - \beta } \right)\left( {4N - 7} \right)}}{{\left( {2N - 3} \right)\left( {N - 2} \right)}}{\varepsilon _2} - \frac{{4\gamma - 1}}{\gamma }。$

此时选取ε1>0充分小,ε2>0使得J5=0。故(12)变为

$ \begin{array}{l} \mathit{\Phi '}\left( t \right) \le {J_1} + {J_2}\mathit{\Phi }\left( t \right) + {J_3}{\left( {\mathit{\Phi }\left( t \right)} \right)^{\frac{{2N - 3}}{{2\left( {N - 2} \right)}}}} + \\ {J_4}{\left( {\mathit{\Phi }\left( t \right)} \right)^{\frac{{3\left( {N - 2} \right)}}{{3N - 8}}}}。\end{array} $ (13)

对(13)从0到t*积分,最终导出

$ {t^ * } \ge \int_{\mathit{\Phi }\left( 0 \right)}^\infty {\frac{{{\rm{d}}\eta }}{{{J_1} + {J_2}\eta + {J_3}{\eta ^{\frac{{2N - 3}}{{2\left( {N - 2} \right)}}}} + {J_4}{\eta ^{\frac{{3\left( {N - 2} \right)}}{{3N - 8}}}}}}} 。$

故定理1证毕。

注1:问题(1)~(3)中,若齐次Dirichlet边界条件(2)替换为齐次Neumann边界条件,则可以得到与定理1类似的结论。事实上,此时Sobolev型不等式变为

$ {\left\| {a{{\left( x \right)}^{\frac{1}{2}}}{u^{2\gamma }}} \right\|_{{L^{\frac{{2N}}{{N - 2}}}}\left( \Omega \right)}} \le {C_s}{\left\| {a{{\left( x \right)}^{\frac{1}{2}}}{u^{2\gamma }}} \right\|_{{W^{1,2}}\left( \Omega \right)}}。$

从而,(10)变为

$ \begin{array}{l} {\left( {\int_\Omega {{{\left( {a\left( x \right)} \right)}^{\frac{N}{{N - 2}}}}{u^{\frac{{4N\gamma }}{{N - 2}}}}{\rm{d}}x} } \right)^{\frac{1}{4}}} \le {C_B}{\left( {\mathit{\Phi }\left( t \right)} \right)^{\frac{N}{{4\left( {N - 2} \right)}}}} + \\ {C_B}{\left( {\int_\Omega {a\left( x \right){{\left| {\nabla {u^{2\gamma }}} \right|}^2}{\rm{d}}x} } \right)^{\frac{N}{{4\left( {N - 2} \right)}}}}, \end{array} $

其中

$ \begin{array}{l} {C_B} = \max \left\{ {\left( {1 + {{\left( {\frac{1}{2}{{\left| A \right|}^2}} \right)}^{\frac{N}{{4\left( {N - 2} \right)}}}}} \right){C_b},{2^{\frac{N}{{4\left( {N - 2} \right)}}}}{C_b}} \right\},\\ {C_b} = \left\{ {\begin{array}{*{20}{c}} {{2^{\frac{1}{2}}}{{\left( {{C_s}} \right)}^{\frac{3}{2}}},}&{N = 3,}\\ {{{\left( {{C_s}} \right)}^{\frac{N}{{2\left( {N - 2} \right)}}}},}&{N > 3。} \end{array}} \right. \end{array} $

易得爆破时间t*的下界为

$ {t^ * } \ge \int_{\mathit{\Phi }\left( 0 \right)}^\infty {\frac{{{\rm{d}}\eta }}{{{L_1} + {L_2}\eta + {L_3}{\eta ^{\frac{{2N - 3}}{{2\left( {N - 2} \right)}}}} + {L_4}{\eta ^{\frac{{3\left( {N - 2} \right)}}{{3N - 8}}}}}}} , $

其中

$ {L_1} = \frac{{2\gamma k\left( {1 - \beta } \right)}}{{2N - 3}}\int_\Omega {{{\left( {a\left( x \right)} \right)}^\sigma }{\rm{d}}x} , $
$ {L_2} = \frac{{2\gamma \left| A \right|}}{{{\zeta _1}}}, $
$ {L_3} = \frac{{2\gamma k\left( {1 - \beta } \right)\left( {4N - 7} \right)}}{{2N - 3}}{C_B}, $
$ {L_4} = \frac{{\gamma kC_N^{\frac{{4\left( {N - 2} \right)}}{{3N - 8}}}\left( {1 - \beta } \right)\left( {4N - 7} \right)\left( {3N - 8} \right)}}{{2\left( {2N - 3} \right)\left( {N - 2} \right)\zeta _2^{\frac{N}{{3N - 8}}}}}。$

这里ζ1>0充分小,ζ2>0使得

$ \frac{{k\beta }}{\gamma } + \frac{{\left| A \right|{\zeta _1}}}{{2\gamma }} + \frac{{\gamma kN\left( {1 - \beta } \right)\left( {4N - 7} \right){\zeta _2}}}{{2\left( {2N - 3} \right)\left( {N - 2} \right)}} - \frac{{4\gamma - 1}}{\gamma } = 0。$
2 例题

本节中,将通过举例来验证定理1。

例1  令u(x, t)是如下问题的非负古典解:

$ {u_t} = \Delta u + \left( {\frac{1}{{100}} + \left| x \right|} \right){\left| {\nabla u} \right|^{\frac{3}{2}}},\left( {x,t} \right) \in \Omega \times \left( {0,{t^ * }} \right), $
$ \begin{array}{*{20}{c}} {u = 0,}&{\left( {x,t} \right) \in \partial \Omega \times \left( {0,{t^ * }} \right),} \end{array} $
$ \begin{array}{*{20}{c}} {u\left( {x,0} \right) = 1 - \left| x \right| > 0,}&{x \in \Omega ,} \end{array} $

其中ΩR3中的单位球,给定

$ f\left( {\left| {\nabla u} \right|} \right) = {\left| {\nabla u} \right|^{\frac{3}{2}}},a\left( x \right) = \frac{1}{{100}} + \left| x \right|,{u_0}\left( x \right) = 1 - \left| x \right|。$

k=1, β=$\frac{3}{4}$, γ=2, 并取A=(1, 1, 1),易验证此时条件(H1), (a2), (a5)以及定理1中参数范围均成立。同时,三维空间中Sobolev最优化常数

$ {C_s} = {3^{ - \frac{1}{2}}}{4^{\frac{1}{3}}}{\pi ^{ - \frac{2}{3}}} = 0.43。$

现在,将β代入到σ中,可求得σ=$\frac{{15}}{2}$。下面,选取ε1=10, ε2=1.35,使得J5=0。由此将上述参数代入到J1, J2, J3, J4中,可以算出J1=0.43, J2=0.69, J3=0.65, J4=0.17。

因此,由定理1知爆破时间的下界为

$ {t^ * } \ge \int_{\mathit{\Phi }\left( 0 \right)}^\infty {\frac{{{\rm{d}}\eta }}{{{J_1} + {J_2}\eta + {J_3}{\eta ^{\frac{3}{2}}} + {J_4}{\eta ^3}}}} = 1.34, $

其中$\mathit{\Phi }\left( 0 \right) = \int_\Omega {\left( {\left( {\frac{1}{{100}} + \left| x \right|} \right){{\left( {1 - \left| x \right|} \right)}^8}} \right)} {\rm{d}}x = 0.24$

3 结语

本文中,运用修正的微分不等式技巧,研究了高维空间中具有加权梯度源项的半线性抛物方程Dirichlet初边值问题解爆破时间。给出了当爆破发生时,在加权测度意义下解爆破时间的下界,并给出具体实例说明了研究结果的有效性。

参考文献
[1]
Straughan B. Explosive Instabilities in Mechanics[M]. Berlin: Springer, 1998. (0)
[2]
Quittner R, Souplet P. Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States[M]. Basel: Birkhäuser, 2007. (0)
[3]
Hu B. Blow-up Theories for Semilinear Parabolic Equations[M]. Berlin: Springer, 2011. (0)
[4]
Levine H A. The role of critical exponents in blowup theorems[J]. SIAM Rev, 1990, 32(2): 262-288. DOI:10.1137/1032046 (0)
[5]
Levine H A. Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics: the method of unbounded Fourier coefficients[J]. Math Ann, 1975, 214(3): 205-220. DOI:10.1007/BF01352106 (0)
[6]
Payne L E, Schaefer P W. Lower bounds for blow-up time in parabolic problems under Dirichlet conditions[J]. J Math Anal Appl, 2007, 328(2): 1196-1205. DOI:10.1016/j.jmaa.2006.06.015 (0)
[7]
Payne L E, Schaefer P W. Lower bounds for blow-up time in parabolic problems under Neumann conditions[J]. Appl Anal, 2006, 85(10): 1301-1311. (0)
[8]
Fang Z B, Wang Y X. Blow-up analysis for a semilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux[J]. Z Angew Math Phys, 2015, 66(5): 1-17. (0)
[9]
Baghaei K, Hesaaraki M. Lower bounds for the blow-up time in the higher-dimensional nonlinear divergence form parabolic equations[J]. C R Math Acad Sci Paris, 2013, 351(19-20): 731-735. DOI:10.1016/j.crma.2013.09.024 (0)
[10]
Liu Y, Luo S G, Ye Y H. Blow-up phenomena for a parabolic problem with a gradient nonlinearity under nonlinear boundary conditions[J]. Comput Math Appl, 2013, 65(8): 1194-1199. DOI:10.1016/j.camwa.2013.02.014 (0)
[11]
Marras M. Bounds for blow-up time in nonlinear parabolic systems under various boundary conditions[J]. Numer Func Anal Opt, 2011, 32(4): 453-468. DOI:10.1080/01630563.2011.554949 (0)
[12]
Marras M, Piro S V, Viglialoro G. Lower bounds for blow-up time in a parabolic problem with a gradient term under various boundary conditions[J]. Kodai Math J, 2014, 37(3): 532-543. DOI:10.2996/kmj/1414674607 (0)
[13]
Zhang Q Y, Jiang Z X, Zheng S N. Blow-up time estimate for a degenerate diffusion equation with gradient absorption[J]. Appl Math Comput, 2015, 251(C): 331-335. (0)
[14]
Lv X S, Song X F. Bounds of the blowup time in parabolic equations with weighted source under nonhomogeneous Neumann boundary condition[J]. Math Methods Appl Sci, 2014, 37(7): 1019-1028. DOI:10.1002/mma.v37.7 (0)
[15]
Song X F, Lv X S. Bounds for the blowup time and blowup rate estimates for a type of parabolic equations with weighted source[J]. Appl Math Comput, 2014, 236(236): 78-92. (0)
[16]
Friedman A. Partial differential equations of parabolic type[J]. Englewood Cliffs, 1964, 148(3267): 850-851. (0)
[17]
Ben-Artzi M, Souplet P, Weissler F B. The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces[J]. J Math Pures Appl, 2002, 81(4): 343-378. DOI:10.1016/S0021-7824(01)01243-0 (0)
[18]
Gilding B H, Guedda M, Kersner R. The Cauchy problem for utu+|∇u|p[J]. J Math Anal Appl, 2003, 284(284): 733-755. (0)
[19]
Brezis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations[M]. New York: Springer, 2011. (0)
Lower Bounds for a Semi-linear Parabolic Equation with Weighted Gradient Source Term
MA Ling-Wei, FANG Zhong-Bo     
School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China
Abstract: This article investigates the lower bounds for the Dirichlet initial boundary value problem of a semi-linear parabolic equation with weighted gradient source term. By virtue of a modified differential inequality technique to determine lower bounds of blow-up time in the higher dimensional spaces when blow-up occurs. Moreover, a example is given to illustrate application of the main result.
Key words: semi-linear parabolic equation    weight function    gradient term    lower bound of blow-up time