具有外部扰动的非线性系统的自适应跟踪控制 | ![]() |
在过去的几十年中, 由于在工程实践中的应用, 如飞机控制系统、智能机器人控制系统, 外部扰动已成为不可忽视的因素。在文献[1]中说明, 一个常见的Lyapunov函数方法对带有外部扰动的非线性系统分析是一个有效的工具。通过使用Lyapunov函数方法, 对于非线性系统已经取得一些显著成就[2-6]。同时, 利用反推技术, 对带有扰动的非线性系统也有一些结论[7-8]。
对于控制非线性系统, 常常用模糊逻辑系统来逼近未知光滑非线性函数。模糊逻辑系统的逼近能力和反推技术方法可以用于不同系统中的控制问题, 如在[9-10]中, 对于随机非线性系统, 提出了自适应稳定控制方案。在文献[11]中, 对于具有未知滞后的非线性系统, 根据反推方法提出了自适应模糊控制方案。在文献[12]中, 基于控制器的神经网络系统, 提出了模糊控制方案。然而上述系统没有考虑外部扰动的影响。增加了外部扰动的系统, 对于Lyapunov函数和自适应率的设计, 有了更高的要求。因此带有外部扰动系统控制问题的研究也受到广泛关注, 并且取得一些成果。如:对于一类切换不确定非线性系统的自适应神经跟踪控制的研究[13]; 一类带有外部扰动和未知死区的纯反馈非线性系统的自适应模糊控制[14]。在文献[15]中研究了一类具有滞后的纯反馈非线性系统的自适应神经控制问题, 其系统带有外部扰动, 但是其滞后输出类型是P-I模型。
研究的带有外部扰动的非线性系统的跟踪问题, 不同于文献[9-12]中忽视了外部扰动, 也不同于文献[15]中的控制系统和滞后输出。通过设计适当的Lyapunov函数和自适应率, 解决外部扰动问题。使用模糊逻辑系统来逼近未知非线性函数。通过反推技术, 设计了一种新的自适应模糊控制方案。
1 准备工作和问题陈述考虑以下带有外部扰动的非线性系统:
$ \left\{ \begin{array}{l} {{\dot x}_i} = {x_{i + 1}} + {f_i}\left( {{{\bar x}_i}} \right),\;\;\;\;\;1 \le i \le n - 1,\\ {{\dot x}_n} = u + {f_n}\left( {{{\bar x}_n}} \right) + d\left( t \right),\\ y = {x_1}, \end{array} \right. $ | (1) |
其中xi=[x1, x2, …, xi]T∈Ri是状态变量, u∈R是系统输入, y∈R是系统输出, fi(·)是未知的非线性函数, d(t)是有界外部扰动。
使用模糊逻辑控制系统来逼近定义在完备集Ω上的一个连续函数f(x)。采用单点模糊化和中心平均模糊化推论得到以下模糊规则[16]:
$ \begin{array}{l} {R^l}:{\rm{If}}\;{x_1}\;{\rm{is}}\;F_1^l\;{\rm{and,}} \cdots {\rm{,and}}\;{x_n}\;{\rm{is}}\;F_n^l,\\ {\rm{then}}\;y\;{\rm{is}}\;{G^l},l = 1,2{\rm{,}} \cdots {\rm{,}}N。\end{array} $ |
其中x=[x1, x2, …, xn]T∈Rn和y∈R分别是模糊系统的输入和输出, Fil和Gl是R中的模糊集, N是规则数。则模糊系统的输出为:
$ y\left( x \right) = \frac{{\sum\nolimits_{l = 1}^N {{\varphi _l}\prod\nolimits_{i = 1}^n {{\mu _{F_i^l}}\left( {{x_i}} \right)} } }}{{\sum\nolimits_{l = 1}^N {\left[ {\prod\nolimits_{i = 1}^n {{\mu _{F_i^l}}\left( {{x_i}} \right)} } \right]} }}, $ | (2) |
其中
$ {\varphi _l} = \mathop {\max }\limits_{y \in R} {\mu _{{G^l}}}\left( y \right),\varphi = {\left( {{\varphi _1},{\varphi _2}, \cdots ,{\varphi _N}} \right)^T}。$ |
令
$ \begin{array}{l} {\xi _l}\left( x \right) = \frac{{\prod\nolimits_{i = 1}^n {{\mu _{F_i^l}}\left( {{x_i}} \right)} }}{{\sum\nolimits_{l = 1}^N {\left[ {\prod\nolimits_{i = 1}^n {{\mu _{F_i^l}}\left( {{x_i}} \right)} } \right]} }},\\ \xi \left( x \right) = {\left( {{\xi _1}\left( x \right),{\xi _2}\left( x \right), \cdots ,{\xi _N}\left( x \right)} \right)^T}。\end{array} $ |
模糊逻辑系统(2) 可以重新写为:
$ y\left( x \right) = {\varphi ^T}\xi \left( x \right)。$ | (3) |
引理1[16] 设f(x)是定义在完备集Ω上的连续函数。对∀ε>0, 存在一个模糊逻辑系统(3), 使得
$ \mathop {\sup }\limits_{x \in \Omega } \left| {f\left( x \right) - {\varphi ^T}\xi \left( x \right)} \right| \le \varepsilon 。$ |
引理2[17] 对∀(x, y)∈R2, 以下不等式成立:
$ xy \le \frac{{{\varepsilon ^p}}}{p}{\left| x \right|^p} + \frac{1}{{q{\varepsilon ^q}}}{\left| y \right|^q}, $ | (4) |
其中ε>0, p>1, q>1, (p-1)(q-1)=1。
引理3[18] 考虑以下动态形式:
$ \dot {\hat {\theta}} = - \gamma \hat \theta \left( t \right) + k\rho \left( t \right), $ |
其中γ和k是正常数, ρ(t)是正函数。对于∀t≥t0和任意给定的初始条件
引理4[19] 假设存在一个C2, 1类函数V(x, t), 两个正整数c1和c2, k∞类函数α1和α2, 对∀x∈Rn和t≥t0, 有:
$ \left\{ \begin{array}{l} {{\bar \alpha }_1}\left( {\left| x \right|} \right) \le V\left( {x,t} \right) \le {{\bar \alpha }_2}\left( {\left| x \right|} \right),\\ \dot V\left( {x,t} \right) \le - {c_1}V\left( {x,t} \right) + {c_2}, \end{array} \right. $ |
则对每一个x0∈Rn, 满足:
$ E\left[ {V\left( t \right)} \right] \le V\left( {{t_0}} \right){e^{ - {c_1}t}} + \frac{{{c_2}}}{{{c_1}}},\;\;\;\;\forall t > {t_0}。$ | (5) |
并且V(x, t)是有界的。
控制目标是:设计一个自适应模糊控制方案, 使得系统输出y跟踪到参考信号yd, 并且闭环系统的所有信号是有界的。
定义函数yd(i)=[yd, yd(1), …, yd(i)]T, i=1, 2, …, n, 其中yd(i)是参考信号yd的i次导数。为了方便控制设计, 作出下面假设。
假设1参考信号yd(t)以及它的n阶导数, 都是连续有界的。
2 设计自适应控制器现在利用反推方法, 设计非线性系统(1) 的自适应控制方案。定义以下坐标变换:
$ \begin{array}{*{20}{c}} {{z_1} = y - {y_d},}\\ {{z_i} = {x_i} - {\alpha _{i - 1}},\;\;\;i = 2,3, \cdots ,n,} \end{array} $ | (6) |
其中αi-1是一个中间控制函数。
在反推设计的每一步, 利用模糊逻辑系统φiTξ(Xi)来逼近未知函数fi。定义一个常数θi=‖φi‖2, i=1, 2, …, n其中估计误差
第1步 考虑系统(1), 由z1=y-yd, 知z1的导数为
$ {{\dot z}_1} = {x_2} + {f_1}\left( {{{\bar x}_1}} \right) - {{\dot y}_d}。$ | (7) |
选择以下Lyapunov函数
$ {V_1} = \frac{{z_1^4}}{4} + \frac{{\tilde \theta _1^2}}{{2{r_1}}}, $ | (8) |
其中r1是正常数。对V1求导, 有
$ \begin{array}{l} {{\dot V}_1} = z_1^3{{\dot z}_1} + \frac{{{{\tilde \theta }_1}{{\dot {\tilde {\theta}} }_1}}}{{{r_1}}}\\ \;\;\;\; = z_1^3\left( {{z_2} + {\alpha _1} + {f_1} - {{\dot y}_d}} \right) - \frac{{{{\tilde \theta }_1}{{\dot {\hat {\theta}} }_1}}}{{{r_1}}}。\end{array} $ | (9) |
根据引理2, 以下不等式成立
$ z_1^3{z_2} \le \frac{3}{4}z_1^4 + \frac{{z_2^4}}{4}, $ | (10) |
将(10) 代入(9) 式, 得
$ {{\dot V}_1} \le z_1^3{\alpha _1} + z_1^3{{\bar f}_1} + \frac{{z_2^4}}{4} - \frac{{{{\tilde \theta }_1}{{\dot {\hat {\theta}} }_1}}}{{{r_1}}}, $ | (11) |
其中
$ \begin{array}{l} {{\bar f}_1} = \varphi _1^T{\xi _1}\left( {{X_1}} \right) + {\delta _1}\left( {{X_1}} \right),\\ \;\;\left| {{\delta _1}\left( {{X_1}} \right)} \right| \le {\varepsilon _1}, \end{array} $ | (12) |
其中X1=(x1, yd,
$ \begin{array}{l} z_1^3{{\bar f}_1} = z_1^3\varphi _1^T{\xi _1} + z_1^3{\delta _1}\\ \;\;\;\;\;\;\; \le \frac{{z_1^6{\theta _1}}}{{2a_1^2}} + \frac{{a_1^2}}{2} + \frac{{3z_1^4}}{4} + \frac{{\varepsilon _1^4}}{4}, \end{array} $ | (13) |
其中a1是正常数。选择虚拟控制信号和自适应率分别为
$ {\alpha _1} = - \left( {{\lambda _1} + \frac{3}{4}} \right){z_1} - \frac{{{{\hat \theta }_1}z_1^3}}{{2a_1^2}}, $ | (14) |
$ {{\dot {\hat {\theta}} }_1} = \frac{{{r_1}z_1^6}}{{2a_1^2}} - {\gamma _1}{{\hat \theta }_1},\;\;\;\;{{\hat \theta }_1}\left( 0 \right) \ge 0, $ | (15) |
其中λ1和γ1是正常数。把(13)—(15) 代入(11), 得
$ {{\dot V}_1} \le - {\lambda _1}z_1^4 + \frac{{z_2^4}}{4} + \frac{{a_1^2}}{2} + \frac{{\varepsilon _1^4}}{4} + \frac{{{\gamma _1}}}{{{r_1}}}{{\tilde \theta }_1}{{\hat \theta }_1}。$ | (16) |
又
$ \frac{{{\gamma _1}}}{{{r_1}}}{{\tilde \theta }_1}{{\hat \theta }_1} \le - \frac{{{\gamma _1}}}{{2{r_1}}}\tilde \theta _1^2 + \frac{{{\gamma _1}}}{{2{r_1}}}\theta _1^2, $ | (17) |
所以(16) 式可以化为
$ {{\dot V}_1} \le - {\lambda _1}z_1^4 - \frac{{{\gamma _1}}}{{2{r_1}}}\tilde \theta _1^2 + {\psi _1} + \frac{{z_2^4}}{4}, $ | (18) |
其中
第2步 由z2=x2-α1, 知z2的导数为
$ {{\dot z}_2} = {x_3} + {f_2}\left( {{{\bar x}_2}} \right) - {{\dot \alpha }_1}, $ | (19) |
其中
$ \begin{array}{*{20}{c}} {{{\dot \alpha }_1} = \frac{{\partial {\alpha _1}}}{{\partial {x_1}}}\left( {{f_1}\left( {{{\bar x}_1}} \right) + {x_2}} \right) + \frac{{\partial {\alpha _1}}}{{\partial {{\hat \theta }_1}}}{{\dot {\hat {\theta}} }_1}}\\ { + \sum\limits_{j = 0}^1 {\frac{{\partial {\alpha _1}}}{{\partial y_d^{\left( j \right)}}}y_d^{\left( {j + 1} \right)}} 。} \end{array} $ | (20) |
选择以下Lyapunov函数
$ {V_2} = {V_1} + \frac{{z_2^4}}{4} + \frac{{\tilde \theta _2^2}}{{2{r_2}}}。$ | (21) |
其中r2是正常数。对V2求导, 有
$ {{\dot V}_2} = {{\dot V}_1} + z_2^3\left( {{z_3} + {\alpha _2} + {f_2} - {{\dot \alpha }_1}} \right) - \frac{{{{\tilde \theta }_2}{{\dot {\hat {\theta}} }_2}}}{{{r_2}}}。$ | (22) |
由引理2, 得
$ z_2^3{z_3} \le \frac{3}{4}z_2^4 + \frac{{z_3^4}}{4}。$ | (23) |
将(18)、(23) 代入(22) 式, 得
$ \begin{array}{l} {{\dot V}_2} \le - {\lambda _1}z_1^4 - \frac{{{\gamma _1}}}{{2{r_1}}}\tilde \theta _1^2 + {\psi _1}\\ \;\;\;\; + z_2^3\left( {{\alpha _2} + {z_2} + {f_2} - {{\dot \alpha }_1}} \right)\\ \;\;\;\; + \frac{{z_3^4}}{4} - \frac{{{{\tilde \theta }_2}{{\dot {\hat {\theta}} }_2}}}{{{r_2}}}。\end{array} $ | (24) |
定义
$ \begin{array}{l} {{\dot V}_2} \le - {\lambda _1}z_1^4 - \frac{{{\gamma _1}}}{{2{r_1}}}\tilde \theta _1^2 + {\psi _1}\\ \;\;\;\; + z_2^3{\alpha _2} + z_2^3{{\bar f}_2} + \frac{{z_3^4}}{4}\\ \;\;\;\;\;\;\;\;\;\; - \frac{{{{\tilde \theta }_2}{{\dot {\hat {\theta}} }_2}}}{{{r_2}}}。\end{array} $ | (25) |
由引理1, 对∀ε2 > 0,
$ \begin{array}{l} {{\bar f}_2} = \varphi _2^T{\xi _2}\left( {{X_2}} \right) + {\delta _2}\left( {{X_2}} \right),\\ \;\;\left| {{\delta _2}\left( {{X_2}} \right)} \right| \le {\varepsilon _2}, \end{array} $ | (26) |
其中
$ z_2^3{{\bar f}_2} \le \frac{{z_2^6{\theta _2}}}{{2a_2^2}} + \frac{{a_2^2}}{2} + \frac{{3z_2^4}}{4} + \frac{{\varepsilon _2^4}}{4}, $ | (27) |
其中a2是正常数。选择以下虚拟控制信号和自适应率分别为
$ {\alpha _2} = - \left( {{\lambda _2} + \frac{3}{4}} \right){z_2} - \frac{{{{\hat \theta }_2}z_2^3}}{{2a_2^2}}, $ | (28) |
$ {{\dot {\hat {\theta}} }_2} = \frac{{{r_2}z_2^6}}{{2a_2^2}} - {\gamma _2}{{\hat \theta }_2},{{\hat \theta }_2}\left( 0 \right) \ge 0, $ | (29) |
其中λ2和γ2是正常数。把(27)—(29) 代入(25) 中, 得
$ \begin{array}{l} {{\dot V}_2} \le - {\lambda _1}z_1^4 - \frac{{{\gamma _1}}}{{2{r_1}}}\tilde \theta _1^2 + {\psi _1}\\ \;\;\;\; - {\lambda _2}z_2^4 + \frac{{z_3^4}}{4} + \frac{{a_2^2}}{2}\\ \;\;\;\; + \frac{{\varepsilon _2^4}}{4} + \frac{{{\gamma _2}}}{{{r_2}}}{{\tilde \theta }_2}{{\hat \theta }_2}。\end{array} $ | (30) |
注意到
$ \frac{{{\gamma _2}}}{{{r_2}}}{{\tilde \theta }_2}{{\hat \theta }_2} \le - \frac{{{\gamma _2}}}{{2{r_2}}}\tilde \theta _2^2 + \frac{{{\gamma _2}}}{{2{r_2}}}\theta _2^2, $ | (31) |
则(30) 式可以重新写为
$ {{\dot V}_2} \le - \sum\limits_{j = 1}^2 {\left( {{\lambda _j}z_j^4 + \frac{{{\gamma _j}}}{{2{r_j}}}\tilde \theta _j^2} \right)} + \sum\limits_{j = 1}^2 {{\psi _j} + \frac{{z_3^4}}{4}} , $ | (32) |
其中
第i步(3≤i≤n-1) 由zi=xi-αi-1, 知zi的导数为
$ {{\dot z}_i} = {x_{i + 1}} + {f_i}\left( {{{\bar x}_i}} \right) - {{\dot \alpha }_{i - 1}}, $ | (33) |
其中
$ \begin{array}{l} {{\dot \alpha }_{i - 1}} = \sum\limits_{j = 1}^{i - 1} {\frac{{\partial {\alpha _{i - 1}}}}{{\partial {x_j}}}\left( {{f_j}\left( {{{\bar x}_j}} \right) + {x_{j + 1}}} \right)} \\ \;\;\;\;\;\; + \sum\limits_{j = 1}^{i - 1} {\frac{{\partial {\alpha _{i - 1}}}}{{\partial {{\hat \theta }_j}}}{{\dot {\hat {\theta}} }_j}} + \sum\limits_{j = 0}^{i - 1} {\frac{{\partial {\alpha _{i - 1}}}}{{\partial y_d^{\left( j \right)}}}y_d^{\left( {j + 1} \right)}} 。\end{array} $ | (34) |
选择以下Lyapunov函数
$ {V_i} = {V_{i - 1}} + \frac{{z_i^4}}{4} + \frac{{\tilde \theta _i^2}}{{2{r_i}}}, $ | (35) |
其中ri是正常数。对Vi求导, 得
$ {{\dot V}_i} = {{\dot V}_{i - 1}} + z_i^3\left( {{z_{i + 1}} + {\alpha _i} + {f_i} - {{\dot \alpha }_{i - 1}}} \right) - \frac{{{{\tilde \theta }_i}{{\dot {\hat {\theta}} }_i}}}{{{r_i}}}。$ | (36) |
根据引理2, 得
$ z_i^3{z_{i + 1}} \le \frac{3}{4}z_i^4 + \frac{{z_{i + 1}^4}}{4}。$ | (37) |
把(37) 代入(36) 式, 有
$ \begin{array}{l} {{\dot V}_i} \le - \sum\limits_{j = 1}^{i - 1} {\left( {{\lambda _j}z_j^4 + \frac{{{\gamma _j}}}{{2{r_j}}}\tilde \theta _j^2} \right)} + \sum\limits_{j = 1}^{i - 1} {{\psi _j}} \\ \;\;\;\;\;\; + z_i^3{{\bar f}_i} + z_i^3{\alpha _i} + \frac{{z_{i + 1}^4}}{4} - \frac{{{{\tilde \theta }_i}{{\dot {\hat {\theta}} }_i}}}{{{r_i}}}, \end{array} $ | (38) |
其中
$ \begin{array}{l} {{\bar f}_i} = \varphi _i^T{\xi _i}\left( {{X_i}} \right) + {\delta _i}\left( {{X_i}} \right),\\ \;\left| {{\delta _i}\left( {{X_i}} \right)} \right| \le {\varepsilon _i}, \end{array} $ | (39) |
其中
$ z_i^3{{\bar f}_i} \le \frac{{z_i^6{\theta _i}}}{{2a_i^2}} + \frac{{a_i^2}}{2} + \frac{{3z_i^4}}{4} + \frac{{\varepsilon _i^4}}{4}, $ | (40) |
其中ai是正常数。选择虚拟控制信号和自适应率分别为
$ {\alpha _i} = - \left( {{\lambda _i} + \frac{3}{4}} \right){z_i} - \frac{{{{\hat \theta }_i}z_i^3}}{{2a_i^2}}, $ | (41) |
$ {{\dot {\hat {\theta}} }_i} = \frac{{{r_i}z_i^6}}{{2a_i^2}} - {\gamma _i}{{\hat \theta }_i},\;\;\;\;{{\hat \theta }_i}\left( 0 \right) \ge 0, $ | (42) |
其中λi和γi是正常数。类似于(31) 式, 有
$ \frac{{{\gamma _i}}}{{{r_i}}}{{\tilde \theta }_i}{{\hat \theta }_i} \le - \frac{{{\gamma _i}}}{{2{r_i}}}\tilde \theta _i^2 + \frac{{{\gamma _i}}}{{2{r_i}}}\theta _i^2。$ | (43) |
把(40)—(43) 代入(38) 式, 得
$ {{\dot V}_i} \le - \sum\limits_{j = 1}^i {\left( {{\lambda _j}z_j^4 + \frac{{{\gamma _j}}}{{2{r_j}}}\tilde \theta _j^2} \right)} + \sum\limits_{j = 1}^i {{\psi _j}} + \frac{{z_{i + 1}^4}}{4}, $ | (44) |
其中
第n步 根据zn=xn-αn-1, 可得zn的导数
$ {{\dot z}_n} = u + {f_n}\left( {{{\bar x}_n}} \right) + d\left( t \right) - {{\dot \alpha }_{n - 1}}, $ | (45) |
其中
$ {V_n} = {V_{n - 1}} + \frac{{z_n^4}}{4} + \frac{{\tilde \theta _n^2}}{{2{r_n}}} + \frac{{{{\tilde d}^2}}}{{2{r_d}}}, $ | (46) |
其中rn是正常数,
$ \begin{array}{l} {{\dot V}_n} = {{\dot V}_{n - 1}} + z_n^3\left( {u + d + {f_n} - {{\dot \alpha }_{n - 1}}} \right)\\ \;\;\;\; - \frac{{{{\tilde \theta }_n}{{\dot {\hat {\theta}} }_n}}}{{{r_n}}} - \frac{{\tilde d\dot {\hat {d}}}}{{{r_d}}}。\end{array} $ | (47) |
将(44) 式取i=n-1代入(47) 式, 得
$ \begin{array}{l} {V_n} \le - \sum\limits_{j = 1}^{n - 1} {\left( {{\lambda _j}z_j^4 + \frac{{{\gamma _j}}}{{2{r_j}}}\tilde \theta _j^2} \right)} + \sum\limits_{j = 1}^{n - 1} {{\psi _j}} \\ \;\;\;\;\;\;\; + z_n^3\left( {\frac{{{z_n}}}{4} + {f_n} + u + d - {{\dot \alpha }_{n - 1}}} \right)\\ \;\;\;\;\;\;\; - \frac{{{{\tilde \theta }_n}{{\dot {\hat {\theta}} }_n}}}{{{r_n}}} - \frac{{\tilde d\dot {\hat {d}}}}{{{r_d}}}。\end{array} $ | (48) |
定义
$ \begin{array}{l} {{\dot V}_n} \le - \sum\limits_{j = 1}^{n - 1} {\left( {{\lambda _j}z_j^4 + \frac{{{\gamma _j}}}{{2{r_j}}}\tilde \theta _j^2} \right)} + \sum\limits_{j = 1}^{n - 1} {{\psi _j}} \\ \;\;\;\;\;\;\; + z_n^3{{\bar f}_n} + z_n^3u - \frac{{{{\tilde \theta }_n}{{\dot {\hat {\theta}} }_n}}}{{{r_n}}} - \frac{{\tilde d\dot {\hat {d}}}}{{{r_d}}}。\end{array} $ | (49) |
根据引理1, 利用模糊系统φnTξn来逼近fn, 和引理2杨不等式可得
$ z_n^3{{\bar f}_n} \le \frac{{z_n^6{\theta _n}}}{{2a_n^2}} + \frac{{a_n^2}}{2} + \frac{{3z_n^4}}{4} + \frac{{\varepsilon _n^4}}{4}, $ | (50) |
其中an是正常数。选择虚拟控制信号和自适应率为
$ u = - \left( {{\lambda _n} + \frac{3}{4}} \right){z_n} - \frac{{{{\hat \theta }_n}z_n^3}}{{2a_n^2}}, $ | (51) |
$ {{\dot {\hat {\theta}} }_n} = \frac{{{r_n}z_n^6}}{{2a_n^2}} - {\gamma _n}{{\hat \theta }_n},\;\;\;{{\hat \theta }_n}\left( 0 \right) \ge 0, $ | (52) |
$ \dot {\hat {d}} = - {\sigma _d}\hat d, $ | (53) |
其中λn、γn和σd是正常数。又因为
$ \frac{{}}{{{r_n}}}{{\tilde \theta }_n}{{\hat \theta }_n} \le - \frac{{{\gamma _n}}}{{2{r_n}}}\tilde \theta _n^2 + \frac{{{\gamma _n}}}{{2{r_n}}}\theta _n^2, $ | (54) |
$ \frac{{{\sigma _d}}}{{{r_d}}}\tilde d\hat d \le - \frac{{{\sigma _d}}}{{2{r_d}}}{{\tilde d}^2} + \frac{{{\sigma _d}}}{{2{r_d}}}{d^2}。$ | (55) |
把(50)—(55) 代入(49) 式, 得
$ {V_n} \le - \sum\limits_{j = 1}^n {\left( {{\lambda _j}z_j^4 + \frac{{{\gamma _j}}}{{2{r_j}}}\tilde \theta _j^2} \right)} + \sum\limits_{j = 1}^n {{\psi _j}} - \frac{{{\sigma _d}}}{{2{r_d}}}{{\tilde d}^2}, $ | (56) |
其中
定义
$ \begin{array}{l} \lambda = min\left\{ {{\sigma _d},4{\lambda _j},{\gamma _j},j = 1,2, \cdots ,n} \right\},\\ b = \sum\limits_{j = 1}^n {{\psi _j}} 。\end{array} $ |
则(56) 可以重新写为
$ {{\dot V}_n} \le - \lambda {V_n} + b,\;\;\;t \ge 0。$ | (57) |
由引理4和Vn的表达式, 知
$ 0 \le E\left[ {{V_n}\left( t \right)} \right] \le {e^{ - \lambda t}}{V_n}\left( 0 \right) + \frac{b}{\lambda }。$ | (58) |
故
$ E\left[ {{V_n}\left( t \right)} \right] \le \frac{b}{\lambda },\;\;t \to \infty 。$ | (59) |
从而
$ E\left( {\sum\limits_{j = 1}^n {z_j^4} } \right) \le 4E\left[ {{V_n}\left( t \right)} \right] \le \frac{{4b}}{\lambda },\;\;t \to \infty 。$ | (60) |
因此, zj收敛到完备集ΩZ, 其中
$ {\Omega _Z} = \left\{ {{z_j}\left| {\sum\limits_{j = 1}^n {E\left[ {{{\left| {{z_j}} \right|}^4}} \right] \le \frac{{4b}}{\lambda }} } \right.} \right\}。$ | (61) |
基于反推技术, 自适应模糊控制器设计完成, 我们可以得到以下结论。
定理1在假设1及初始条件下, 对于非线性系统(1), 通过设计虚拟控制信号(41) 和(51), 以及自适应率(42) 和(52)—(53), 保证了闭环系统的所有信号一致有界, 并且跟踪误差收敛到原点的小领域。
3 总结应用自适应模糊逼近方法研究了一类具有外部扰动的非线性系统的跟踪控制问题。通过设计合适的Lyapunov函数和自适应率, 结合反推技术, 设计出了一个新的自适应模糊控制方案。该控制方案保证了闭环系统的所有信号是有界的, 并且跟踪误差收敛到原点的小领域。
[1] |
CHEN B, LIU X P. Fuzzy approximate disturbance decoupling of MIMO nonlinear systems by backstepping and application to chemical processes[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(6): 832-847. DOI:10.1109/TFUZZ.2005.859322 |
[2] |
李平, 金福江, 梅小华. 带有时滞的未知非仿射非线性系统自适应模糊跟踪控制[J]. 北京工业大学学报, 2014, 40(9): 1315-1320. |
[3] |
楚敬敬, 丛文, 张友琴, 等. 非线性纯反馈时滞系统的自适应模糊跟踪控制[J]. 青岛大学学报, 2014, 28(4): 29-38. |
[4] |
ZHOU J, WEN C Y, LI T S. Adaptive output feedback control of uncertain nonlinear systems with hysteresis nonlinearity[J]. IEEE Transactions on Automatic Control, 2012, 57(10): 2627-2633. DOI:10.1109/TAC.2012.2190208 |
[5] |
YU J P, MA Y M, YU H S, et al. Adaptive fuzzy dynamic surface control for induction motors with iron losses in electric vehicle drive systems via backstepping[J]. Information Sciences, 2016, 376(3): 172-189. |
[6] |
LIU Y J, TONG S C. Barrier lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints[J]. Automatica, 2016, 64(2): 70-75. |
[7] |
ZHAO X D, ZHENG X L, LI R, et al. Adaptive neural tracking control for a class of switched uncertain nonlinear systems[J]. Neurocomputing, 2015, 168(c): 320-326. |
[8] |
ZHANG X M, LIU X K, LI Y. Adaptive fuzzy tracking control for nonlinear strict-feedback systems with unmodeled dynamics via backstepping technique[J]. Neurocomputing, 2017, 235: 182-191. DOI:10.1016/j.neucom.2017.01.011 |
[9] |
季海波, 奚宏生, 陈志福, 等. 具有不确定噪声的随机非线性系统的鲁棒自适应跟[J]. 控制理论与应用, 2003, 20(6): 843-848. |
[10] |
WANG F, LIU Z, ZHANG Y, et al. Adaptive quantized fuzzy control of stochastic nonlinear systems with actuator dead-zone[J]. Information Sciences, 2016, 370: 385-401. |
[11] |
WEN C Y, ZHOU J. Decentralized adaptive stabilization in the presence of unknown backlash-like hysteresis[J]. Automatica, 2007, 43(3): 426-440. DOI:10.1016/j.automatica.2006.10.012 |
[12] |
ZHOU Q, SHI P, XU S Y, et al. Observer-based adaptive neural network control for nonlinear stochastic systems with time delay[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(1): 71-80. DOI:10.1109/TNNLS.2012.2223824 |
[13] |
LIU Z, WANG F, ZHANG Y, et al. Adaptive tracking control for a class of nonlinear systems with a fuzzy dead-zone input[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(1): 193-204. DOI:10.1109/TFUZZ.2014.2310491 |
[14] |
LIN Z K, LIU X K, LI Y. Adaptive fuzzy control for nonlinear pure-feedback systems with external disturbance and unknown dead zone output[J]. International Journal of Fuzzy Systems, 2016, 1-10. |
[15] |
REN B B, GE S ZH, SU C Y, et al. Adaptive neural control for a class of uncertain nonlinear systems in pure-feedback form with hysteresis input[J]. IEEE Transactions on Systems, 2009, 39(2): 431-443. |
[16] |
WANG F, LIU Z, ZHANG Y, et al. Adaptive fuzzy control for a class of stochastic pure-feedback nonlinear systems with unknown hysteresis[J]. IEEE Transactions on Fuzzy Systems, 2015, 24(1): 1-12. |
[17] |
WANG H Q, CHEN B, LIU X P, et al. Robust adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with input constraints[J]. IEEE Transactions on Cybernetics, 2013, 43(6): 2093-2104. DOI:10.1109/TCYB.2013.2240296 |
[18] |
WANG M, ZHANG S Y, CHEN B, et al. Direct adaptive neural control for stabilization of nonlinear time-delay systems[J]. Science China Information Sciences, 2010, 53(4): 800-812. DOI:10.1007/s11432-010-0075-z |
[19] |
TONG S C, LI Y, LI Y M, et al. Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems[J]. IEEE Trans Syst Man Cybern B Cybern, 2011, 41(6): 1693-1704. DOI:10.1109/TSMCB.2011.2159264 |