高校化学工程学报    2018, Vol. 32 Issue (2): 401-406  DOI: 10.3969/j.issn.1003-9015.2018.02.019
0

引用本文 

胡合成, 潘鹏举, 包永忠. 两亲性PNIPAM-b-PVC-b-PNIPAM共聚物的合成与自组装[J]. 高校化学工程学报, 2018, 32(2): 401-406. DOI: 10.3969/j.issn.1003-9015.2018.02.019.
HU He-cheng, PAN Peng-ju, BAO Yong-zhong. Synthesis and Self-Assembly of Amphiphilic PNIPAM-b-PVC-b-PNIPAM Block Copolymers[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(2): 401-406. DOI: 10.3969/j.issn.1003-9015.2018.02.019.

基金项目

国家自然科学基金资助项目(21676235)。

通讯联系人

包永忠, E-mail:yongzhongbao@zju.edu.cn

作者简介

胡合成(1992-), 男, 湖北荆州人, 浙江大学硕士生。

文章历史

收稿日期:2017-09-11;
修订日期:2017-12-29。
两亲性PNIPAM-b-PVC-b-PNIPAM共聚物的合成与自组装
胡合成 , 潘鹏举 , 包永忠     
化学工程联合国家重点实验室(浙江大学),浙江大学 化学工程与生物工程学院,浙江 杭州 310027
摘要:通过单电子转移-蜕化链转移活性自由基聚合合成不同组成的两亲性聚N-异丙基丙烯酰胺-b-聚氯乙烯-b-聚N-异丙基丙烯酰胺(PNIPAM-b-PVC-b-PNIPAM)三嵌段共聚物,并制备共聚物胶束水溶液,采用荧光光谱、动态光散射、透射电镜、紫外-可见光谱等表征共聚物的临界胶束浓度、胶束结构及温度响应性。结果表明,共聚物可在水中形成以PVC为核、PNIPAM为壳的球形胶束,胶束尺寸在75~135 nm;随着共聚物亲水PNIPAM链段含量的增加,临界胶束浓度增大,而胶束尺寸减小。在升温过程中,胶束溶液的透光率逐渐降低,低临界溶解温度随着共聚物亲水链段含量的增加而增大。
关键词聚氯乙烯    N-异丙基丙烯酰胺    嵌段共聚物    活性自由基聚合    自组装    
Synthesis and Self-Assembly of Amphiphilic PNIPAM-b-PVC-b-PNIPAM Block Copolymers
HU He-cheng, PAN Peng-ju, BAO Yong-zhong    
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
Abstract: Amphiphilic poly(N-isopropylacrylamide)-b-poly(vinyl chloride)-b-poly(N-isopropylacrylamide) triblock copolymers were synthesized by single electron transfer-degenerative chain transfer living radical polymerization. Aqueous micelle solutions of triblock copolymers were prepared and critical micelle concentration, micelle structure and temperature-responsive behavior of the triblock copolymers were characterized by fluorescene spectroscopy, dynamic light scattering, TEM and UV-VIS spectrometry. Spherical micelles composed of PVC core and PNIPAM shell with mean size of 75~135 nm were formed. The critical micelle concentration of the copolymer increases and the mean size of micelles decreases as the mass fraction of the hydrophilic PNIPAM block in the copolymer increases. Transmittance of the copolymer solution decreases as temperature increases, and the low critical solution temperature of the copolymer increases with the increase of mass fraction of PNIPAM block in the copolymers.
Key words: poly (vinyl chloride)    poly (N-isopropylacrylamide)    block copolymer    living free radical polymerization    self-assemble    
1 前言

N-异丙基丙烯酰胺(PNIPAM)是典型的温敏刺激响应性聚合物之一,在低临界溶解温度(LCST)附近呈现可逆的相结构和亲水/亲油性转变[1~3]。将PNIPAM键合到聚氯乙烯(PVC)分子链上,不仅可提高PVC的亲水、生物相容和抗凝血性能,而且可赋予材料温敏性,拓展PVC在医用器械、温敏型胶束和水凝胶中的应用。PNIPAM与PVC键合的主要方式有接枝和嵌段共聚。在接枝共聚方面,Yoshioka等[4]通过取代反应先将N, N-二乙基二硫代氨基甲酸钠接枝到PVC分子链上,再通过紫外光引发N-异丙基丙烯酰胺(NIPAM)聚合,得到PVC-g-PNIPAM共聚物,用该共聚物涂布的聚对苯二甲酸乙二醇酯薄膜的水接触角在PNIPAM的LCST附近发生突变。Lee等[5]以脱除少量氯化氢的PVC为接枝基体,通过自由基接枝共聚制备了PVC-g-PNIPAM共聚物,并比较了PVC/PNIPAM共混物和PVC-g-PNIPAM共聚物中PVC和PNIPAM的相容性、接触角和力学性能。Arenas等[6]采用60Co-γ射线引发PVC管表面的NIPAM接枝共聚,改性PVC管具有温敏性水溶胀特性。本课题组[7]采用单电子转移活性自由基聚合实现了NIPAM在PVC上的高效接枝,得到PNIPAM接枝密度和接枝链长度对共聚物胶束尺寸和LCST的影响规律,并发现接枝共聚物胶束可在极低浓度下发生温敏性聚集。含PNIPAM链段的嵌段共聚物多采用活性自由基聚合(LRP)方法制备,尽管由PNIPAM和非PVC疏水链段(如聚苯乙烯、聚丙烯酸正丁酯或聚丁二烯等)构成的嵌段共聚物的合成和自组装已有报道[8~13],但有关PVC-PNIPAM嵌段共聚物的合成与特性研究未见报道。

单电子转移-蜕化链转移活性自由基聚合(SET-DT LRP)是Percec等提出的以碘仿等卤代烷烃为引发剂、连二亚硫酸钠或铜/配体为催化剂的LRP方法,已成功用于氯乙烯、(甲基)丙烯酸酯类等单体聚合[14]。通过SET-DT LRP方法先合成端基为碘的活性PVC或聚丙烯酸酯,再进一步引发丙烯酸酯或氯乙烯聚合可制得各种聚氯乙烯-聚丙烯酸酯嵌段共聚物[15~21]。本课题组通过以碘仿为引发剂、Na2S2O4/NaHCO3为催化体系的SET-DT LRP方法合成了聚氯乙烯-聚丙烯酸嵌段共聚物,并与PVC共混制备了具有pH响应性的PVC超滤膜[22]。本文采用SET-DT LRP方法合成了不同组成的PNIPAM-b-PVC-b-PNIPAM三嵌段共聚物,并研究了共聚物组成对其水相自组装行为(临界胶束浓度、胶束结构及LCST等)的影响。

2 实验(材料和方法) 2.1 试剂

N, N-二甲基甲酰胺(DMF)、Na2S2O4、NaHCO3、乙醚等为分析纯,碘仿(CHI3)为化学纯,国药集团化学试剂有限公司;VC,聚合级,杭州电化集团有限公司;NIPAM(纯度98%)、芘(纯度98%),上海百灵威科技有限公司;分散剂羟丙基甲基纤维素(HPMC)、甲基纤维素(MC),Dow化学公司。

2.2 I-PVC-I的合成

在5 L不锈钢耐压反应釜中加入20.0 g CHI3、1.5 L去离子水、1.0 g HPMC及0.43 g MC,密封反应釜,以高纯氮置换釜内氧气5次,加入500 g VC;在700 r·min-1转速下搅拌并控温至(35±0.2)℃;压入100 mL溶有Na2S2O4(27.8 g)和NaHCO3(9.0 g)的去离子水溶液,开始反应;约8 h后结束聚合反应,过滤、洗涤,室温干燥得到I-PVC-I。

2.3 PNIPAM-b-PVC-b-PNIPAM共聚物的合成

典型过程如下:将2.0 g I-PVC-I、7.24 g NIPAM(0.064 mol)加入到含有80 mL DMF的三口玻璃夹套釜中,用50℃水浴加热并搅拌,排气30 min后加入0.056 g (0.32 mmol)Na2S2O4及0.054 g(0.64 mmol)NaHCO3,反应3 h,以体积10倍于反应液的乙醚作沉淀剂沉淀产物,并以去离子水洗涤、45℃干燥至恒重。

2.4 PNIPAM-b-PVC-b-PNIPAM共聚物胶束的制备

以5 mL DMF溶解20 mg共聚物,逐滴滴加至10 mL去离子水中,透析48 h,每3 h换水一次,最终将共聚物胶束溶液定容至20 mL。

2.5 表征

共聚物化学结构采用500 MHz Bruker DRX500核磁共振(NMR)表征,使用THF-d8作溶剂。聚合物平均分子量及分子量分布采用Waters1525/2414型凝胶渗透色谱(GPC)测定,以浓度为0.05 mol·L-1的LiBr的DMF溶液为洗脱液,聚合物浓度为0.5%(wt),以窄分子量分布聚甲基丙烯酸甲酯为标样。

采用Shimadzu RF-6000 Spectro荧光光谱仪测定PNIPAM-b-PVC-b-PNIPAM共聚物的临界胶束浓度(CMC),芘为荧光探针分子,芘溶液浓度为5.0×10-7mol·L-1。分别配制浓度为0.0001、0.0002、0.0004、0.0008、0.001、0.002、0.004、0.01、0.02、0.04、0.1、0.5、1.0 g·L-1的共聚物胶束溶液用于分析。共聚物胶束溶液的吸光度采用紫外-可见分光光度计(岛津UV-1800)测定,波长500 nm,升温速率为0.5℃·min-1。共聚物胶束流体力学直径采用Malvern Zetasizer Nano ZS90动态光散射(DLS)测定,散射角90°,温度25℃。将胶束溶液滴于镀有碳膜的铜网,室温下烘干,采用JEM-1230透射电子显微镜(TEM)观察胶束形貌,加速电压80 kV。

3 结果与讨论 3.1 PNIPAM-b-PVC-b-PNIPAM共聚物的合成

采用SET-DT LRP方法聚合得到数均分子量(Mn)为4670(平均聚合度75)、分子量分布指数(Mw/Mn)为2.31,和Mn为10680(平均聚合度171)、Mw/Mn为2.48的两种I-PVC-I,再以I-PVC-I为大分子引发剂进行NIPAM聚合制备两亲性嵌段共聚物。为了验证SET-DT聚合的活性,考察了I-PVC-I引发的NIPAM聚合的动力学。图 1为NIPAM转化率与ln([M]0/[M])随聚合时间的变化曲线,其中[M]0与[M]分别是反应时间t=0与t=t时的NIPAM摩尔浓度。可见,ln([M]0/[M])随着聚合时间线性增加,符合活性自由基聚合的典型动力学。图 2为I-PVC-I和不同NIPAM聚合时间得到的PNIPAM-b-PVC-b-PNIPAM共聚物的分子量分布曲线。可见,共聚物分子量呈单峰分布,随着聚合时间增加,分子量分布曲线逐渐向大分子量方向移动。图 3为PNIPAM-b-PVC-b-PNIPAM共聚物理论Mn与实测Mn的比较和Mw/Mn值的变化。由于反应体系的非均相特性,在低转化率(低分子量)阶段,理论和实测Mn接近,而到高转化率(高分子量)阶段,实测Mn略低于理论Mn;随着分子量增加,共聚物的Mw/Mn值逐渐减小,这也表明了NIPAM嵌段共聚的活性。

图 1 NIPAM聚合转化率和ln([M]0/[M])随聚合时间的变化 Fig.1 Variation of conversion and ln([M]0/[M]) as a function of time in NIPAM polymerization (I-PVC-I Mn=4670, [VC]:[NIPAM]=1: 2.5, [NIPAM]:[Na2S2O4]=250:1)
图 2 I-PVC-I和不同聚合时间得到的PNIPAM-b-PVC-b-PNIPAM共聚物的GPC谱线 Fig.2 GPC spectra of I-PVC-I and PNIPAM-b-PVC-b-PNIPAM copolymers obtained at different polymerization times (I-PVC-I Mn=4670, [VC]:[NIPAM]=1:2.5, [NIPAM]:[Na2S2O4]=250:1)
图 3 PNIPAM-b-PVC-b-PNIPAM共聚物理论Mn和实测Mn的比较和Mw/Mn值变化 Fig.3 Comparison on theoretical and GPC determined Mn and variation of Mw/Mn of PNIPAM-b-PVC-b-PNIPAM copolymer (I-PVC-I Mn=4670, [VC]:[NIPAM]=1:2.5, [NIPAM]:[Na2S2O4]=250:1)

图 4为PNIPAM-b-PVC-b-PNIPAM共聚物与I-PVC-I的1H-NMR谱图。由图可见,大约在1.1(c)、4.0(a)、7.0~8.0(b)及4.5 ppm附近的位移峰,分别归属异丙基的甲基氢、次甲基氢、PNIPAM嵌段的酰胺基氢和PVC链上氯代亚甲基氢(-CHCl)。在I-PVC-I的1H-NMR谱δ=6.0ppm附近属于-CHClI基团的峰,在嵌段共聚物的1H-NMR谱中消失,表明了PNIPAM链段成功嵌段在I-PVC-I两端。

图 4 活性PVC和PNIPAM-b-PVC-b-PNIPAM共聚物的1H-NMR谱线 Fig.4 1H-NMR spectra of I-PVC-I and PNIPAM-b-PVC-b-PNIPAM copolymers
3.2 PNIPAM-b-PVC-b-PNIPAM共聚物的临界胶束浓度

PNIPAM-b-PVC-b-PNIPAM共聚物具有两亲特性,有可能在水中自组装形成以疏水PVC链段为核、亲水PNIPAM链段为壳的胶束。合成的PNIPAM-b-PVC-b-PNIPAM共聚物不溶于水,故采用溶剂交换法制备共聚物胶束。在300~380 nm波长范围内,不同浓度PNIPAM-b-PVC-b-PNIPAM共聚物胶束溶液的芘荧光激发光谱、激发光谱强度比I339/I334与胶束浓度对数(logC)的关系如图 5所示。可见,PNIPAM-b-PVC-b-PNIPAM共聚物胶束表现出从334到339 nm的红移现象,说明探针分子环境由亲水逐渐转变为疏水,表明了胶束的形成。

图 5 不同浓度PNIPAM42-b-PVC171-b-PNIPAM42共聚物胶束溶液的芘荧光激发光谱(25℃)和荧光激发光谱强度比I339/I334与log C关系 Fig.5 Fluorescence spectroscopy and intensity ratio (I338/I333)-log C relation for PNIPAM42-b-PVC171-b-PNIPAM42 copolymer micelle solutions containing pyrene

I339/I334强度比急剧上升的浓度点对应着两亲共聚物溶液的CMC,当嵌段共聚物浓度小于CMC时,溶液中尚未形成胶束,所有芘分子都处于亲水环境中,此时I339/I334几乎不变。当嵌段共聚物浓度大于CMC,溶液中开始形成胶束,一定量的芘分子转移到胶束内部的疏水环境,334 nm处的激发峰开始发生偏移,I339/I334逐渐增大。拟合得到PNIPAM14-b-PVC171-b-PNIPAM14、PNIPAM38-b-PVC171-b-PNIPAM38与PNIPAM42-b-PVC171-b-PNIPAM42共聚物的CMC依次为5.6、6.3、6.6 mg·L-1。CMC依赖于共聚物的亲水/疏水性,随着亲水性PNIPAM链段含量的增加,CMC逐渐增大。三种共聚物的CMC都很低,因为三者的疏水性都很强,共聚物在水中的溶解度很低。

3.3 PNIPAM-b-PVC-b-PNIPAM共聚物胶束结构

采用DLS和TEM分别分析了共聚物胶束的粒径分布和形貌,结果如图 67所示,体均粒径和粒径分布指数如表 1所示。由图 6表 1可见,共聚物胶束的尺寸在75~134 nm,并随着亲水链段含量或亲水/疏水链段比的增加而逐渐降低。虽然共聚物分子链长增加,但亲水性逐渐增加,胶束聚集数逐渐降低,形成一个胶束所需的嵌段共聚物分子数降低。

图 6 不同组成PNIPAM-b-PVC-b-PNIPAM共聚物胶束粒径分布 Fig.6 Micelle size distributions of PNIPAM-b-PVC-b-PNIPAM copolymers with different compositions (micelle concentration 0.1%(wt), 25℃)
图 7 PNIPAM-b-PVC-b-PNIPAM共聚物胶束的TEM照片(0.1%(wt)) Fig.7 TEM micrographs of PNIPAM-b-PVC-b-PNIPAM copolymer micelles (0.1%(wt)) (a) PNIPAM14-b-PVC171-b-PNIPAM14   (b) PNIPAM13-b-PVC75-b-PNIPAM13  (c) PNIPAM43-b-PVC171-b-PNIPAM43
表 1 不同组成PNIPAM-b-PVC-b-PNIPAM共聚物胶束尺寸及分布指数(胶束浓度0.1%(wt)) Table 1 Volume average size and size distribution indexes of PNIPAM-b-PVC-b-PNIPAM copolymer micelles

图 7可见,PNIPAM-b-PVC-b-PNIPAM共聚物胶束呈球形,PNIPAM形成胶束的亲水性外壳,PVC形成胶束的疏水性内核。TEM照片所显示的胶束尺寸要小于DLS所测的胶束尺寸,因为干燥过程中胶束失水,在水溶液中舒展的亲水链段收缩,所以粒径变小。(a)图PNIPAM14-b-PVC171-b-PNIPAM14与(b)图PNIPAM13-b-PVC75-b-PNIPAM13胶束尺寸近似相等,(c)图PNIPAM43-b-PVC171-b-PNIPAM43胶束尺寸要小于(a)、(b),这与DLS所测结果相符。

3.4 PNIPAM-b-PVC-b-PNIPAM共聚物的低临界溶解温度

因为PNIPAM的温敏性,PNIPAM-b- PVC-b-PNIPAM共聚物亦表现出LCST行为,随着温度的变化胶束会发生相转变,导致胶束溶液吸光度的变化,典型结果如图 8所示。

图 8 PNIPAM-b-PVC-b-PNIPAM共聚物溶液透光率随温度的变化(0.1%(wt)) Fig.8 Profiles of PNIPAM-b-PVC-b-PNIPAM copolymer solution transmittance as a function of temperature (0.1%(wt)) a. PNIPAM14-b-PVC171-b-PNIPAM14
b. PNIPAM27-b-PVC171-b-PNIPAM27
c. PNIPAM38-b-PVC171-b-PNIPAM38

当温度较低时,共聚物胶束溶液呈透明状,随着温度的升高,溶液变得浑浊,透光率逐渐下降。这是因为升温过程中PNIPAM的疏水性逐渐增加,胶束变得不稳定而聚集,同时胶束的溶剂化作用减弱,疏水相与水溶液环境之间的微相分离更加显著。LSCT受共聚物亲水/疏水性的影响,随着亲水性的增加,胶束的LCST逐渐增加,PNIPAM14-b- PVC171-b-PNIPAM14、PNIPAM27-b-PVC171-b-PNIPAM27和PNIPAM38-b-PVC171-b-PNIPAM38共聚物的LCST依次为35.6、37.2和38.3℃。

4 结论

采用SET-DT LRP成功合成了不同组成的PNIPAM-b-PVC-b-PNIPAM两亲嵌段共聚物,并验证了I-PVC-I引发的NIPAM聚合的活性特征。PNIPAM-b-PVC-b-PNIPAM共聚物在水中能自组装形成以PVC为核、PNIPAM为壳的球形胶束。随着共聚物疏水PVC链段含量的增加,临界胶束浓度逐渐降低,胶束尺寸逐渐增大。因为PNIPAM的温敏性,PNIPAM-b-PVC-b-PNIPAM共聚物表现出LCST行为,随着共聚物亲水链段含量的增加,LCST逐渐增加。

参考文献
[1] Hoffman A S, Stayton P S. Conjugates of stimuli-responsive polymers and proteins[J]. Progress in Polymer Science , 2007, 32(8-9): 922-932. DOI:10.1016/j.progpolymsci.2007.05.005.
[2] Tian H Y, Tang Z H, Zhuang X L, et al. Biodegradable synthetic polymers:Preparation, functionalization and biomedical application[J]. Progress in Polymer Science , 2012, 37(2): 237-280. DOI:10.1016/j.progpolymsci.2011.06.004.
[3] Roy D, Cambre J N, Sumerlin B S. Future perspectives and recent advances in stimuli-responsive materials[J]. Progress in Polymer Science , 2010, 35(1-2): 278-301. DOI:10.1016/j.progpolymsci.2009.10.008.
[4] Yoshioka H, Mikami M, Mori Y, et al. Preparation of thermoresponisve surfaces using polyvinychloride-graft-poly (N-isopropylacrylamide)[J]. Polymer for Advanced Technologies , 1993, 4(1): 519-521.
[5] Lee W F, Tu Y M. Graft copolymerization of N-isopropylacrylamide onto poly(vinyl chloride)[J]. Journal of Applied Polymer Science , 1999, 74(5): 1234-1241. DOI:10.1002/(ISSN)1097-4628.
[6] Arenas E, Bucio E, Burillo G, et al. Radiation grafting of N-isopropylacrylamide onto poly(vinyl chloride) tubes by gramma irradiation[J]. Polymer Bulletin , 2007, 58(2): 401-409. DOI:10.1007/s00289-006-0672-6.
[7] Liu K, Pan P, Bao Y. Synthesis, micellization, and thermally-induced macroscopic micelle aggregation of poly(vinyl chloride)-g-poly(N-isopropylacrylamide) amphiphilic copolymer[J]. RSC Advance , 2015, 5(115): 94582-94590. DOI:10.1039/C5RA16726D.
[8] Cetintas M, Kamperman M. Self-assembly of PS-b-PNIPAM-b-PS block copolymer thin films via selective solvent annealing[J]. Polymer , 2016, 107(1): 387-397.
[9] PU Xin-ming(蒲新明), JU Zhen-hua(琚振华), CHEN Qi-jing(陈起静), et al. Synthesis of amphiphilic highly branched block copolymers based on mechanism transformation from anionic polymerization Into RAFT-based polymerization(基于负离子-RAFT机理转换合成两亲性高度支化嵌段共聚物)[J]. Acta Polymerica Sinica(高分子学报) , 2017(2): 283-293.
[10] Papagiannopoulos A, Meristoudi A, Pispas S, et al. Thermoresponsive behavior of micellar aggregates from end-functionalized PnBA-b-PNIPAM-COOH block copolymers and their complexes with lysozyme[J]. Soft Matter , 2016, 12(31): 6547-6556. DOI:10.1039/C6SM00976J.
[11] Luo Y L, Yang X L, Xu F, et al. Thermosensitive PNIPAM-b-HTPB block copolymer micelles:molecular architectures and camptothecin drug release[J]. Colloids and Surfaces B:Biointerfaces , 2014, 114(1): 150-157.
[12] Graisuwan W, Zhao H, Kiatkamjornwong S, et al. Formation of thermo-sensitive and cross-linkable micelles by self-assembly of poly(pentafluorophenyl acrylate)-containing block copolymer[J]. Journal of Polymer Science, Part A:Polymer Chemistry , 2015, 53(9): 1103-1113. DOI:10.1002/pola.v53.9.
[13] Adelsberger J, Grillo I, Kulkarni A, et al. Kinetics of aggregation in micellar solutions of thermoresponsive triblock copolymers-influence of concentration, start and target temperatures[J]. Soft Matter , 2012, 9(5): 1685-1699.
[14] Rosen B M, Percec V. Single-electron transfer and single-electron transfer degenerative chain transfer living radical polymerization[J]. Chemical Reviews , 2009, 109(11): 5069-5119. DOI:10.1021/cr900024j.
[15] Percec V, Guliashvili T, Popov A V, et al. Synthesis of poly(methyl methacrylate)-b-poly(vinyl chloride)-b-poly(methyl methacrylate) block copolymers by CuCl/2, 2'-bipyridine-catalyzed living radical block copolymerization initiated from alpha, omega-di(iodo) poly(vinyl chloride) prepared by single-electron-transfer/degenerative-chain-transfer mediated living radical polymerization[J]. Journal of Polymer Science Part A-Polymer Chemistry , 2005, 43(7): 1478-1486. DOI:10.1002/(ISSN)1099-0518.
[16] Percec V, Guliashvili T, Popov A V, et al. Ultrafast synthesis of poly(methyl methacrylate)-b-poly(vinyl chloride)-b-poly(methyl methacrylate) block copolymers by the Cu(0)/tris(2-dimethylaminoethyl)amine-catalyzed living radical block copolymerization of methyl methacrylate initiated with ɑ, ω-di(iodo)poly(vinyl chloride) in the presence of dimethyl sulfoxide at 25 degrees C[J]. Journal of Polymer Science Part A-Polymer Chemistry , 2005, 43(8): 1660-1669. DOI:10.1002/(ISSN)1099-0518.
[17] Percec V, Popov A V, Ramirez-Castillo E, et al. Synthesis of poly(vinyl chloride)-b-poly(2-ethylhexyl acrylate)-b-poly(vinyl chloride) by the competitive single-electron-transfer/degenerative-chain-transfer mediated living radical polymerization of vinyl chloride initiated from ɑ, ω-di(iodo)poly(2-ethylhexyl acrylate) and catalyzed with sodium dithionite in water[J]. Journal of Polymer Science Part A-Polymer Chemistry , 2005, 43(11): 2276-2280. DOI:10.1002/(ISSN)1099-0518.
[18] Coelho J F J, Silva A, Popov A V, et al. Synthesis of poly(vinyl chloride)-b-poly(n-butyl acrylate)-b-poly(vinyl chloride) by the competitive single-electron-transfer/degenerative-chain-transfer-mediated living radical polymerization in water[J]. Journal of Polymer Science Part A-Polymer Chemistry , 2006, 44(9): 3001-3008. DOI:10.1002/(ISSN)1099-0518.
[19] Percec V, Sienkowska M J. Synthesis of the four-arm star-block copolymer PVC-b-PBA-CH(CH3)-CO-O-CH2(4)C by SET-DTLRP initiated from a tetrafunctional initiator[J]. Journal of Polymer Science Part A-Polymer Chemistry , 2009, 47(2): 628-634. DOI:10.1002/pola.v47:2.
[20] Rocha N, Gamelas J A F, Goncalves P M, et al. Influence of physical-chemical interactions on the thermal stability and surface properties of poly(vinyl chloride)-b-poly(hydroxypropyl acrylate)-b-poly(vinyl chloride) block copolymers[J]. European Polymer Journal , 2009, 45(12): 3389-3398. DOI:10.1016/j.eurpolymj.2009.09.020.
[21] Rocha N, Coelho J F J, Gois J R, et al. Poly(vinyl chloride)-b-poly(hydroxypropyl acrylate)-b-poly(vinyl chloride):understanding the synthesis of an amphiphilic PVC block copolymer on a pilot scale[J]. Journal of Vinyl & Additive Technology , 2013, 19(2): 94-104.
[22] YIN Xun-di(尹逊迪), HUANG Zhi-hui(黄志辉), BAO Yong-zhong(包永忠). pH-Responsive poly(vinyl chloride) ultrafiltration membranes modified by poly(vinyl chloride)-poly(acrylic acid) block copolymers(聚氯乙烯-聚丙烯酸嵌段共聚物改性的pH响应性聚氯乙烯超滤膜)[J]. Journal of Chemical Engineering of Chinese Universities(高校化学工程学报) , 2017, 31(4): 938-944.