高校化学工程学报    2018, Vol. 32 Issue (6): 1255-1263  DOI: 10.3969/j.issn.1003-9015.2018.06.003
0

引用本文 

位宗瑶, 王亦飞, 颜留成, 伍子玮, 于广锁, 王辅臣. 高雷诺数下管内垂直降膜瞬时厚度空间分布及波动特性[J]. 高校化学工程学报, 2018, 32(6): 1255-1263. DOI: 10.3969/j.issn.1003-9015.2018.06.003.
WEI Zong-yao, WANG Yi-fei, YAN Liu-cheng, WU Zi-wei, YU Guang-suo, WANG Fu-cheng. Spatial Distribution and Wave Characteristics of Falling Liquid Film in Scrubbing-Cooling Tube under High Reynolds Numbers[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(6): 1255-1263. DOI: 10.3969/j.issn.1003-9015.2018.06.003.

基金项目

国家重点研发计划(2017YFB0602601)。

通讯联系人

王亦飞, E-mail:wangyf@ecust.edu.cn

作者简介

位宗瑶(1994-), 男, 新疆乌鲁木齐人, 华东理工大学博士生。

文章历史

收稿日期:2018-04-13;
修订日期:2018-07-11。
高雷诺数下管内垂直降膜瞬时厚度空间分布及波动特性
位宗瑶 , 王亦飞 , 颜留成 , 伍子玮 , 于广锁 , 王辅臣     
煤气化及能源化工教育部重点实验室,华东理工大学 洁净煤技术研究所,上海 200237
摘要:研究了高雷诺数条件下(Rel=2.04×104)洗涤冷却管内下降液膜的空间分布及波动特性。采用超声波多普勒测速仪对不同轴向和周向位置的下降液膜瞬时厚度进行了无接触测量。结果表明:在高雷诺数条件下,管内液膜处于高湍动状态,液膜表面波动剧烈,平均参数无法准确描述液膜空间分布及波动特性。随着轴向和周向距离的增加,膜表面波动幅度及大波频率减少,小波频率增加。轴向上,液膜瞬时厚度概论密度分布函数(PDF)曲线波峰高度随轴向距离增加而增高;周向上,PDF曲线呈单峰-双峰-单峰分布。
关键词垂直降膜    瞬时厚度    空间分布    波动特性    
Spatial Distribution and Wave Characteristics of Falling Liquid Film in Scrubbing-Cooling Tube under High Reynolds Numbers
WEI Zong-yao, WANG Yi-fei, YAN Liu-cheng, WU Zi-wei, YU Guang-suo, WANG Fu-cheng    
Key Laboratory of Coal Gasification and Energy Chemical Engineering of Ministry of Education, Institute of Clean Coal Technology, East China University of Science and Technology, Shanghai 200237, China
Abstract: Spatial distribution and wave characteristics of falling liquid film in scrubbing-cooling tube under Reynolds number of 2.04×104 were investigated. The instantaneous thickness of the falling film at different axial and circumferential directions was measured non-intrusively by Ultrasonic Doppler Velocimetry. The results show that the liquid film in the tube is under extreme turbulent state and the wave fluctuates violently at high Reynolds numbers. Therefore, the spatial distribution and wave characteristics cannot precisely predicted by average parameters. Moreover, the amplitude and large-wave frequency decrease and the small-wave frequency increases with the increase of axial and circumferential distances. The wave height of Probability Density Function of instantaneous thickness increases with the increase of axial distance, and the curve shows unimodal-doublet-unimodal distribution in the circumferential direction.
Key words: falling film    instant thickness    spatial distribution    wave characteristic    
1 前言

降膜流动因其小流量,小温差,高热质传递系数,结构简单等优点被广泛应用于化学工程,热能工程,食品工业,核工业等领域[1-4]。在华东理工大学研发的多喷嘴对置式水煤浆气化技术中,洗涤冷却室是整个气化技术的重要组成部分。新型洗涤冷却室采用喷淋床和鼓泡床相结合的复合床结构,主要用来完成高温合成气的快速冷却、熔渣的冷却凝固与分离等过程[5]。在形成喷淋床的洗涤冷却管中,液膜与合成气并流,实现合成气的冷却降温、增湿的作用,同时隔离高温气体与洗涤冷却管壁的直接接触,使其免受高温热应力的破坏[6]

国内外已有众多学者对液膜的波动特性展开了研究。早在1916年Nusselt就提出液膜层流流动模型,但在实际应用中,液膜流动多以湍流流动方式进行。Guzanov等[7]对沿垂直平板流动的等温液膜表面波进行可视化研究,揭示了中低液体流量范围内三种典型波的演化过程。Zhao等[8]使用数值模拟的方法对沿水平管流动的降液膜进行研究,发现停滞点附近的流场受液体流速、管径、液体分布器、液温的影响较大。Mudawar等[9]发现与低黏度液体液膜流动相比黏度较高的液体液膜流动具有不同特性,还指出在液膜流动过程中,40%~70%的液体质量是由大波携带传递的。Alekseenko等[10]、Li等[11]对气液剪切作用下的液膜流动行为进行了研究。此外Lu等[12]、Alekseenko等[13]、臧丽叶[14]、Trifonov[15]、Ji等[16]、Julien等[17]、于意奇等[18]、马学虎等[19]通过实验与模拟的方法对液膜表面波动特性进行了研究(见表 1)。

表 1 液膜流动研究对比 Table 1 Comparison of studies on liquid film flow in literature

综上,对于降膜流动的研究多集中在中低雷诺数(Re < 1.0×104),对于高雷诺数条件下的液膜瞬时波动特性还少有研究。而在一些工业装置中(如洗涤冷却室),垂直降膜的湍动程度高,液膜波动剧烈,因此研究高雷诺数条件下液膜波动情况对于实际工业应用具有重要意义。同时,对于新型洗涤冷却室降膜部分的研究也多集中在平均特性的研究[20-22]。然而,在洗涤冷却管内,液膜雷诺数高,液膜表面波动剧烈且复杂,参数平均值代表性不高,仅依靠平均参数的变化无法较好地反应管内液膜的波动特性。

此外,Kapitza曾较早地指出液膜有效厚度的减少是传热增强的主要原因。在洗涤冷却室降膜冷却部分中,降液膜与高温合成气直接接触以降低合成气温度,但由于洗涤冷却管管径大,液膜流速快,液膜厚度在管内各位置的分布具有较大差异。同时,如果液膜厚度过大,会降低热质传递系数,影响冷却效率;若液膜厚度过小则会导致液膜断裂及干壁,使管壁与高温气体直接接触,易使管壁变形甚至烧损,危及生产。因此研究管内液膜瞬时厚度变化对洗涤冷却室的放大具有重要意义。

本文以新型洗涤冷却室下降管内降液膜为研究对象,借助超声多普勒测速仪测量液膜瞬时膜厚分布,研究了高液膜雷诺数条件下(Rel=2.04×104)下降管内液膜瞬时厚度的空间分布及其波动特性。

2 实验系统 2.1 实验装置

主体实验装置如图 1所示,除洗涤冷却环由不锈钢制成外,其余部分由有机玻璃制成。实验所用液相介质为自来水,水由水泵从储水槽抽出,经流量计输送至洗涤冷却环的四个入水口。水经洗涤冷却环分布形成环状液膜,沿洗涤冷却管自由向下流动,并从洗涤冷却室底部排出进入储水槽循环使用。

图 1 装置流程图 Fig.1 Schematic diagram of the experimental setup 1. blower 2. flowmeter 3. water pump 4. water tank 5. scrubbing cooling ring 6. water inlet (4) 7. scrubbing cooling tube 8. transducer 9. top view of the ring 10. chamber 11.UDV 12.computer

图 2为洗涤冷却室部分结构图。洗涤冷却环入口内径21 mm,内部高度43 mm,出口槽缝宽度为3 mm。洗涤冷却管长1000 mm,内径138 mm,壁厚6 mm。定义周向角度θ,以入水口所在周向位置为0°,如图 2(a)所示。定义轴向流动距离H,如图 2(b)所示。

图 2 洗涤冷却环和管结构(未按比例) Fig.2 Geometry of the scrubbing-cooling ring and tube (not in scale)
2.2 实验仪器

实验采用超声波多普勒测速仪(ultrasonic doppler velocimetry,UDV)测量管内瞬时液膜厚度。超声多普勒测速仪是基于超声波探测技术的仪器,其测量原理如图 3所示。

图 3 超声多普勒测速仪测量原理 Fig.3 Principle of UDV measurement

传感器向待测对象发射一定频率的超声波,声波穿过传播介质及管壁后,在流体介质中传播。由于超声波传播方向与流体流动方向存在一定夹角(小于90°),声波在遇到流体介质中的固体颗粒、气泡等微小粒子时,会发生反射,且声波频率会发生改变,即多普勒效应。传感器接收到不同位置粒子的反射波时间不同,经过信号动态频谱分析和计算,即可得到超声波传播路径上不同位置的跟随流体运动的微粒速度,该速度即可视为该处的流体速度。

本文利用超声波测速仪特性,将其应用于液膜瞬时厚度测量。在本实验中,超声波在通过壁面-水、水-空气两个界面时均会产生较强的反射波,经传感器接收后可以得到其强度和传播时间,根据接收两反射波的时间差和介质中超声波的传播速度可以推算出两个界面间距离,即为液膜的厚度。

实验时,鉴于洗涤冷却环的对称结构,在周向上测量0°~45°位置的液膜厚度,位置安排为:0°、8°、16°、24°、34.5°及45°。轴向上,测量点范围70~920 mm。测量时,探针以垂直轴向方向紧贴壁面以减少角度测量带来的误差;同时降低超声波的衰减程度。

实验所采用的传感器直径8 mm,探测区域直径为5 mm,发出的超声波频率为4 MHz,超声波传播方向上空间分辨率最低为0.12 mm。实验中采样速率为每秒100组。

2.3 不确定度分析

实验所采用的液膜雷诺数Rel是根据液膜特点取当量直径为特征长度的Re数,其表达式为

$ {R}{{{e}}_{\rm{l}}}=\frac{4{\mathit{\Gamma}} }{\mu } $ (1)

式中:Γ为液膜单位湿周上的质量流率,μ为水的黏度。

UDV可直接测得液膜的厚度δ,其重复测量的A类相对不确定度为

${{{U}}_{\text A}}=\sqrt{\frac{{{\sum\limits_{i=1}^{n}{\left( {{\delta }_{i}}-\overline{\delta } \right)}}^{2}}}{n(n-1){{\overline{\delta }}^{2}}}} $ (2)

UDV测量液膜厚度的仪器误差Δδ = 0.06 mm,假设被测量为均匀分布,取包含因子k = $\sqrt{3}$,故B类相对不确定度为

$ {{{U}}_{\text B}}=\frac{{{\Delta }_{\delta }}}{\sqrt{3}\overline{\delta }} $ (3)

本实验的合成相对不确定度为

$ {U}=\sqrt{U_{\text A}^{2}+U_{\text B}^{2}} $ (4)

本实验中,液膜厚度测量的相对不确定度最大值约为2.70%。

3 实验结果与讨论 3.1 各位置液膜瞬时厚度分布

图 4为液膜雷诺数Rel=2.04×104时,不同空间位置液膜瞬时厚度随时间的变化情况。

图 4 液膜厚度随时间变化 Fig.4 Liquid film thickness as a function of time

图 4(a)(b)(c)分别为Rel = 2.04×104时,0°、24°与45°位置的液膜瞬时厚度随时间变化的轴向分布。可以看出,液膜瞬时厚度随时间变化在轴向上具有较大差异。整体上,随着轴向距离的增加,液膜平均厚度减小,大波出现频率减小而小波频率增加。0°初始位置H= 0.07 m和H = 0.22 m处,液膜受洗涤冷却环约束影响,液膜厚度在δ = 3 mm附近波动;随着流动距离的增加,小波频率增加,波动情况更加复杂。24°位置较0°位置液膜厚度整体偏小,大波频率相对较小,而小波频率相对较高。45°位置由于平均膜厚较小,大波频率相对其它位置较高。

图 4(d)(e)(f)Rel=2.04×104时,在0.12、0.52和0.92 m位置处液膜瞬时厚度随时间变化的周向分布图。由图可见,不同周向位置液膜瞬时厚度的时域变化具有较大差异。在洗涤冷却管上半段,如高度为0.12和0.52 m处,0°位置及其附近位置,波动较为剧烈,且波动以大波形式为主,H = 0.12 m处0°位置受洗涤冷却环约束影响,液膜厚度在δ = 3 mm附近波动;24°和34.5°大波频率下降,小波频率增加;45°位置由于平均膜厚较小,大波频率有所上升。洗涤冷却管下半段,整体液膜平均膜厚较小,大幅度波频率较上半段要高。

3.2 标准偏差与相对标准偏差

标准偏差表示了一个数据集的离散程度,而相对标准偏差则表示了测试结果的精密度,二者可以用来衡量液膜表面的波动程度。图 5展示了液膜雷诺数Rel = 2.04×104条件下,各轴向位置液膜瞬时厚度变化的标准偏差和相对标准偏差。

图 5 液膜厚度标准偏差与相对标准偏差轴向分布 Fig.5 Axial distribution of SD and RSD of liquid film thickness

图 5(a)所示,0°和8°位置,液膜厚度的标准偏差相对其他位置要高,呈现先增大后减小的趋势,表明在洗涤冷却管上半段(H ≤0.52 m) 0°和8°位置处,液膜波动情况复杂;其他位置液膜厚度的标准偏差较低,表明在此区域内液膜表面波动未发生明显变化。

图 5(b)为轴向上液膜厚度的相对标准偏差。0°位置为进水口,平均液膜厚度较大导致相对标准偏差较小;随着流动距离的增加,0°位置液膜向两侧流动,平均膜厚减小,相对标准偏差逐渐增大;轴向距离继续增加,液膜相对标准偏差再次减小并逐渐平缓,表明液膜表面波动情况趋于稳定。8°位置,液膜标准偏差开始时较大,这是因为起始位置液膜雷诺数高,液膜湍动剧烈,0°位置的局部较厚液膜在流动过程中会左右湍动,而8°位置初始膜厚较薄,在此影响下其相对标准偏差较高,波动剧烈且复杂;0.12~0.17 m段,8°位置液膜因0°位置液膜向两侧流动而使平均膜厚增加,相对标准偏差减小;随着液膜继续流动,8°位置液膜向液膜平均厚度更小的16°流动,使液膜厚度相对标准偏差逐渐增大;洗涤冷却管下半段,液膜厚度相对标准偏差逐渐平稳,液膜表面波动也逐渐趋于稳定。16°、24°、34.5°、45°的相对标准偏差值在轴向上变化较小。

图 6为液膜雷诺数Rel = 2.04×104条件下各周向位置液膜瞬时厚度变化的标准偏差和相对标准偏差。图 6(a)为周向上液膜厚度的标准偏差。可以看出,在洗涤冷却管上半段,0°附近位置液膜厚度标准偏差较大,而45°及其位置附近液膜厚度标准偏差较小;在洗涤冷却管下半段,各周向位置的液膜标准偏差较为接近。

图 6 液膜厚度标准偏差与相对标准偏差周向分布 Fig.6 Circumferential distribution of SD and RSD of liquid film thickness

图 6(b)为液膜厚度的相对标准偏差图。0°位置由于平均膜厚较大导致相对标准偏差较小,0°附近位置受0°较厚液膜向两侧湍动影响,相对标准偏差较大,波动剧烈;45°及其附近位置的液膜相对标准偏差较为接近,波动情况相似;在管上半段,液膜相对标准偏差在8°位置处达到最大;在管下半段,液膜相对标准偏差值随着周向角度的增加有增大趋势。

3.3 概率密度分布函数

高雷诺数条件下液膜波动剧烈,仅依靠观察液膜波动的时域特性所能获取的有用信息较少。为了对液膜瞬时厚度波动进行进一步分析,本文基于Matlab中Ksdensity函数拟合液膜瞬时波动的概论密度分布函数(probability density function,PDF)。

图 7是不同轴向位置上液膜瞬时厚度的概率密度分布函数。入水口位置,如图 7(a)所示,管初始段,0.12 m和0.22 m处受洗涤冷却环约束影响PDF曲线波峰高且陡,液膜厚度分布集中,波动程度小。随着流动距离的增加,PDF曲线左移,液膜厚度减小;0.37和0.52 m位置处,波峰矮且缓,液膜波动加剧;管出口位置,波峰高度略有增加,波动程度有所减小。24°位置,随着流动距离的增加,PDF曲线分布由双峰分布变为单峰分布,但整体宽度大,液膜厚度分布范围大。45°位置各高度PDF曲线呈单峰分布,波峰高且陡,表明此位置液膜厚度分布集中,平均值代表性大,液膜波动小。

图 7 不同轴向位置液膜厚度概率密度函数 Fig.7 Probability density function of liquid film thickness at different axial positions

图 8是不同周向位置上液膜瞬时厚度的概率密度分布函数。入水口,如图 8(a)所示,在0.12 m,0°位置,波峰高且陡,表明在进水口位置液膜受到洗涤冷却环约束,分布集中,波动小。8°位置处,PDF曲线在膜厚较小位置出现第二峰,波峰矮且缓,表明此位置受0°处液膜左右振荡影响,液膜波动剧烈,液膜瞬时厚度分布范围大,平均值代表性低。“PDF的双峰特征是周期拟正弦波动的显著特征,可将其作为鉴别表面波波动特性的1个判据”[14]。16°、24°、34.5°、45°位置,PDF曲线主峰不断左移,双峰特性逐渐减弱,液膜厚度减小;45°位置处,第二峰基本消失。在管初始段PDF曲线表现出单峰-双峰-单峰分布,液膜瞬时波动呈现两端波动小,中间波动大的特性,同时液膜厚度随周向距离的增加而减小。

图 8 不同周向位置液膜厚度概率密度函数 Fig.8 Probability density function of liquid film thickness in different circumferential positions

在洗涤冷却管中段,如图 8(b)所示,0°、8°位置液膜已不受洗涤冷却环约束,波峰低缓,液膜波动较大,但仍呈现单峰特性。16°,PDF曲线左移并出现双峰,但波高增加,液膜波动程度减小。34.5°、45°,PDF曲线呈现单峰分布,波高且陡,液膜波动程度较低,平均值代表性高。

洗涤冷却管尾部,如图 8(c)所示,PDF曲线呈现较弱的单峰-双峰-单峰分布,且曲线包围区域重叠程度高,表明此处各周向位置液膜厚度分布及波动程度较为相似。

排除洗涤冷却环约束影响,综合图 7可以看出0°波峰最矮,宽度最大;24°次之;45°波峰最高,宽度最小。表明整体上,随着周向距离的增加液膜波动程度不断减小。综合图 8可以看出0.12 m处波峰最矮,宽度最大;0.52 m处次之;0.92 m处波峰最高,宽度最小。表明整体上,随着轴向距离的增加液膜波动程度不断减小。

4 结论

利用超声波多普勒测速仪测量了新型洗涤冷却室洗涤冷却管内下降液膜的瞬时厚度,研究了高雷诺数条件下(Rel=2.04×104)管内液膜瞬时厚度的空间分布及其波动特性,得出以下结论:

(1) 高雷诺数条件下,洗涤冷却管内液膜处于高湍动状态,液膜瞬时厚度在不同空间位置的分布有明显不同,液膜表面波动剧烈,波动情况复杂,平均膜厚代表性低。

(2) 在进水口附近位置(0°,H≤0.22 m)液膜厚度受洗涤冷却环约束影响,液膜厚度接近槽缝宽度,其瞬时厚度在3 mm附近波动。随着轴向和周向距离的增加,表面波动幅度不断减小,大波频率减小,小波频率增加,但在45°位置及管出口位置会因液膜平均厚度较小导致大波频率有所上升。

(3) 排除洗涤冷却环约束影响,轴向上0°、8°位置液膜瞬时厚度的标准偏差及相对标准偏差先增大后减小,在0.3~0.4 m达到最大,其它位置标准偏差相似,并且在轴向上变化不大。周向上,0.37和0.52 m在0°、8°位置标准偏差最大,其它位置情况相似;管上半段相对标准偏差先增大后趋于平缓,下半段各周向位置变化较小。

(4) 随着周向距离的增加,液膜瞬时厚度PDF曲线呈现双峰-单峰-双峰变化,除0.12 m,0°位置,波峰矮且缓,平均值代表性低。轴向上,随着流动距离的增加,波峰逐渐增高,波动程度减小,平均值代表性增大。

参考文献
[1] Commenge J M, Semara H, Roques-Carmes T. Hydrodynamics simulation of a falling-film microstructured reactor and energetic analysis of the film stability[J]. Chemical Engineering and Processing:Process Intensification, 2017, 122: 44-57. DOI:10.1016/j.cep.2017.09.015.
[2] Shi Lin, Zheng Zhang, Xi Liu, et al. Numerical study of falling film flow on a horizontal rotating tube[J]. International Journal of Heat and Mass Transfer, 2018, 117: 465-473. DOI:10.1016/j.ijheatmasstransfer.2017.10.005.
[3] WEI Sheng-jie(韦胜杰), SONG Jian(宋建), HU Po(胡珀), et al. Statistical characteristics of water film falling down large flat plate(竖壁冷态降液膜流动统计特性实验研究)[J]. Atomic Energy Science and Technology(原子能科学技术), 2012, 46(6): 674-678.
[4] Piotr Cyklis. Industrial scale engineering estimation of the heat transfer in falling film juice evaporators[J]. Applied Thermal Engineering, 2017, 123: 1365-1373. DOI:10.1016/j.applthermaleng.2017.05.194.
[5] YU Zun-hong (于遵宏), WANG Yi-fei (王亦飞), ZHOU Zhi-jie (周志杰), et al. Composite bed high-temperature coal gas cooling washing equipment and its industrial application (一种复合床高温煤气冷却洗涤设备及其工业应用): CN, 01112880.1.2001[P]. 2001-11-21.
[6] XU jie (许杰). Progress in hydrodynamics and mass transfer scrubbing-cooling pipe[D].Shanghai (上海): East China University of Science and Technology (华东理工大学), 2003.
[7] Guzanov V V, Bobylev A V, Heinz O M, et al. Characterization of 3-D wave flow regimes on falling liquid films[J]. International Journal of Multiphase Flow, 2018, 99: 474-484. DOI:10.1016/j.ijmultiphaseflow.2017.11.013.
[8] Zhao C Y, Ji W T, Jin P H, et al. Hydrodynamic behaviors of the falling film flow on a horizontal tube and construction of new film thickness correlation[J]. International Journal of Heat and Mass Transfer, 2018, 119: 564-576.
[9] Mudawar I, Houpt R A. Measurement of mass and momentum transport in wavy-laminar falling liquid films[J]. International Journal of Heat and Mass Transfer, 1993, 36(17): 4154-4162.
[10] Alekseeko S V, Aktershev S P, Cherdantsev A V, et al. Primary instabilities of liquid film flow sheared by turbulent gas stream[J]. International journal of Multiphase Flow, 2009, 35(7): 617-627. DOI:10.1016/j.ijmultiphaseflow.2009.03.003.
[11] Li M J, Lu Y, Zhang S J, et al. A numerical study of effects of counter-current gas flow rate on local hydrodynamic characteristics of falling films over horizontal tubes[J]. Desalination, 2016, 383: 68-80. DOI:10.1016/j.desal.2016.01.016.
[12] Lu C, Jiang S Y, Duan R Q. Wave characteristics of falling film on inclination plate at moderate reynolds number[J]. Science and Technology of Nuclear Installations, 2016, 2016: 1-7.
[13] Alekseenko S V, Antipin V A, Bobylev A V, et al. Application of PIV to velocity measurements in a liquid film flowing down an inclined cylinder[J]. Experiments in Fluids, 2007, 43(2-3): 197-207. DOI:10.1007/s00348-007-0322-2.
[14] ZANG Li-ye(臧利叶), TIAN Rui-feng(田瑞峰), LIU Xiao-yi(刘晓一), et al. Experiment study and spectrum analysis of wave flow in liquid film falling down vertical plate(垂直下降液膜波动特性实验研究与谱分析)[J]. Atomic Energy Science and Technology(原子能科学技术), 2014, 48(11): 1985-1991. DOI:10.7538/yzk.2014.48.11.1985.
[15] Trifonov Y. Nonlinear waves on a liquid film falling down an inclined corrugated surface[J]. Physics of Fluids, 2017, 29(5): 1-7.
[16] Ji G, Wu J F, Chen Y P, et al. Asymmetric distribution of falling film solution flowing on hydrophilic horizontal round tube[J]. International Journal of Refrigeration, 2017, 78: 83-92. DOI:10.1016/j.ijrefrig.2017.03.022.
[17] Landel J R, McEvoy H, Dalziel S B. Cleaning of viscous drops on a flat inclined surface using gravity-driven film flows[J]. Food and Bioproducts Processing, 2015, 93: 310-317. DOI:10.1016/j.fbp.2014.09.009.
[18] YU Yi-qi(于意奇), YANG Yan-hua(杨燕华), CHENG xu(程旭). Numerical simulation on wave structure of falling film on flat plate(平板降膜波动形态数值研究)[J]. Atomic Energy Science and Technology(原子能科学技术), 2012, 46(11): 1342-1347.
[19] MA Xue-hu(马学虎), BO Shou-shi(薄守石), LAN Zhong(兰忠), et al. Analysis on wave flow of laminar-wavy falling liquid film(降液膜波动的影响因素分析)[J]. Journal of Chemical Engineering of Chinese Universities(高校化学工程学报), 2010, 24(1): 10-15. DOI:10.3969/j.issn.1003-9015.2010.01.003.
[20] WANG Ling-ping(王灵萍), WANG Yi-fi(王亦飞), GUO Qiang-qiang(郭强强), et al. Flow characteristics of vertical falling film in scrubbing-cooling pipe(洗涤冷却管内垂直降膜流动特性)[J]. CIESC Journal(化工学报), 2013, 64(6): 1959-1968. DOI:10.3969/j.issn.0438-1157.2013.06.009.
[21] WANG Jing(王晶), WANG Yi-fei(王亦飞), YANG Liu-cheng(颜留成), et al. Characteristics of velocity and thickness distribution of liquid film in vertical falling tube(管内垂直下降液膜速度与厚度分布特性)[J]. CIESC Journal(化工学报), 2016, 67(6): 2239-2245.
[22] Yan L C, Wang Y F, Wu Z W, et al. Research of vertical falling film behavior in scrubbing-cooling tube[J]. Chemical Engineering Research and Design, 2016, 117: 627-636.