骨折风险评价工具(fracture risk assessment tool,FRAX®)是世界卫生组织(World Health Organization,WHO)推荐的评价骨质疏松症(osteoporosis,OP)患者骨折风险的计算机软件,临床用于协助识别脆性骨折风险较高的患者,并指导适当干预。脆性骨折的多发性和后果的严重性,促使该工具在世界范围内受到广泛研究和应用,现将其进展做一综述。
FRAX®的基本情况FRAX®工具收录了患者的性别、年龄、体质量指数及其他7个独立的临床危险因素, 包括既往脆性骨折史、父母髋部骨折史、长期糖皮质激素使用史、类风湿关节炎史、大量饮酒史、吸烟以及是否患有其他导致继发性OP的疾病,股骨颈骨密度(bone mineral density,BMD)列为可选因素, 在线打开该软件,根据要求选择是或否,即可得出未来10年髋部及主要OP骨折部位(包括髋部、脊椎、桡骨远端和肱骨)发生骨折风险的概率。基于超过25年大量的队列研究结果支持FRAX®所使用的算法来估计髋部骨折和主要骨折的发生率[1]。临床实践表明,FRAX®应用于门诊患者或社区居民的筛查或诊断,可以减少不必要的BMD检查的数量,以及盲目的OP治疗[2]。
FRAX®与其他评价工具对比BMD测定、亚洲人骨质疏松自我筛查工具(osteoporosis self-assessment tool for Asian, OSTA)[3]、定量CT扫描、GARVAN-NO MOGRAM评估法、有限元分析[4]等也可以用于评价骨折风险,但对客观条件要求较高, 而且对于BMD来说也有其局限性[5]。澳大利亚的研究认为OSTA在识别低骨折风险人群时与不包含BMD的FRAX®相似[6]。但另有研究表明,OSTA对高龄人群评价的敏感性没有FRAX®好[7]。FRAX®和澳大利亚GARVAN-NOMOGRAM评估法在髋部骨折预测的一致性在以前是被接受的, 但前者的应用范围更广[8]。
FRAX®关联因素选择FRAX®所选择的骨折危险因素均经过验证,除此之外的常见因素也受到广泛研究和讨论。
BMD是受到关注最多的危险因素。澳大利亚等地区的研究认为对于低风险人群不包含BMD的FRAX®也可以给出不逊于其他工具的的阈值[9-10],尤其在年轻人群,单独的FRAX®可以提供与包含BMD的FRAX®相同的预测结果[11]。研究表明在无症状的绝经后女性,不参考BMD的FRAX®已较腰椎和股骨颈T值更能准确的预测常见的脊柱骨折[12]。英国的研究甚至认为,可以先行FRAX®评价,再根据结果决定是否检查BMD[13]。也有特殊情况需要注意,当预测时间超过10年时,通过BMD的预测好于通过临床风险因素评估FRAX®[14],而且针对特殊人群的试验结果认为不包含BMD的10年骨折风险测算会轻度高估骨折风险[15],欧洲的研究认为当选择BMD时FRAX®预测脊柱骨折的能力即被改善[16],但是随意选择BMD检查的部位对于接近临界值的患者的骨折风险评价会产生较大影响[17]。西班牙的研究认为不选择BMD的FRAX®目前针对女性髋部骨折的预测效果尚可,但是对于预测主要部位骨折的能力有限[18]。
另外一些未入选因素也受到关注。骨小梁评分可以描述骨骼微结构,实验表明将其纳入FRAX®后可能提高骨折预测水平[19]。老年人脊柱的形态特征如胸椎曲度、腰椎曲度及坐立时的倾斜角与通过FRAX®计算得出脆性骨折的概率有确定关系[20]。血糖水平对于糖尿病患者是独立于BMD和FRAX®之外的髋部和主要骨折的预测指标[21],但加拿大的研究认为,糖尿病是主要骨折的独立危险因素,但不会明显影响FRAX®的效果或骨折的高发部位[22]。研究认为炎性肠病不会使整体骨折风险升高,但是可能使髋部骨折风险升高[23]。跌倒是发生骨折的重要危险因素,但其干扰因素较多且难以量化,所以在FRAX®计算中没有被涉及。澳大利亚的研究表明,社会经济状况也可能是独立的骨折危险因素,虽然FRAX®提供了骨折评价和修正,但是没有把它考虑在内[24]。
FRAX®相关资料的获得对FRAX®表现的系统分析认为,可能因为评价因素获得的难度及准确度的差异,导致往往只在某一群体去评估FRAX®的性能并进行校正,而没在总体环境下进行[25]。FRAX®中使用的很多临床危险因素可以在电子病历中获得,但是与现有文献报道的研究相比,利用电子病历数据库做的研究得出的结果很有可能偏低[26]。
FRAX®在不同人群的使用 FRAX®适用对象FRAX®适用于未发生过骨折的骨量低下人群(T值>-2.5)。不同年龄段使用的效果不同。针对≥85岁老年人的研究发现,FRAX®对该人群预测值偏低[27],但是罗马尼亚的研究认为,骨折概率的干预阈值能够捕获高骨折风险患者,且不受年龄因素干扰[28],尤其筛查年轻的患者,可降低不必要的检查,同时还提高发现需要接受干预患者的概率[29]。美国的研究认为FRAX®应该被推荐用来筛选高骨折风险的老年人[30]。加拿大的研究表明,FRAX®严重低估了年龄<65岁并且发生过一次脆性骨折患者再骨折风险[31]。有数据表明性别因素也可导致偏倚,FRAX®可以被单独用来识别高风险女性,但是对男性的研究却很少,而且在整体骨折发生率方面仅有的研究结果认为评价能力仍不满意[32-33]。美国的一项研究也认为,把FRAX®应用在男性患者,其价值仍存在不确定性[34]。
FRAX®在不同国家的使用芬兰的研究表明,利用当地居民中绝经后妇女对修正后的芬兰FRAX®模型进行评估,提示芬兰的FRAX®工具能够恰当的反映髋部骨折风险状况[35]。波兰版本的FRAX®通过与实际的骨折发生率进行对比,其可信度得以验证[36]。欧洲的诸多研究表明,尽管FRAX®预测能力久经证实,但是作为金标准来实施干预仍然存在局限性,因为其敏感度较低、混杂因素的影响以及缺乏确能达标的证据[37],类似的研究表明,FRAX®评分的改变无法独立地预测骨折可能性的改变,其反应程度不足以被当作治疗结果的评估工具[38]。英国国家健康研究院和国家OP指南小组认可FRAX®能够识别80%骨折人数作为中位或者更高风险的骨折[39]。加拿大指南推荐FRAX®来报告10年骨折风险,FRAX®报告被家庭医生优先选用并且产生了更好的骨折后随访及更接近专家的治疗策略[40]。在日本,FRAX®最近也被用来确定是否对骨量减少患者开始药物治疗的标准[41]。韩国针对类风湿关节炎患者的研究表明,符合FRAX®标准的患者发生新骨折的概率同根据BMD诊断的OP患者的发生概率一样,并据此进行药物干预[42]。在新加坡,FRAX®被用来指导减少风险因子或其他因素,如跌倒、补充钙和维生素D等[43]。爱尔兰的FRAX®模型是第一个使用国家髋部骨折概率数据和爱尔兰病死率修正过的骨折预测模型[44]。FRAX®工具已经被葡萄牙成功地修正到适合葡萄牙人的程度,现在就能够被用来计算10年OP性骨折的风险[45]。在马来西亚,FRAX®已部分代替最初的基于BMD的诊治[46]。根据总体罗马尼亚人进行修订的FRAX®模型在2011年6月发布,并且阐述了其不同于其他国家模型的特征[47]。哥伦比亚的FRAX®模型于2010年6月30日发布,FRAX®工具成为哥伦比亚临床使用较好的方法[48]。在沙特阿拉伯,使用FRAX®评估10年与OP相关的骨折概率,并从初级预防的人群中发现需要及时干预的患者[49]。斯里兰卡FRAX®模型与非洲的其他国家模型表现一致[50]。在墨西哥以及巴勒斯坦地区,使用FRAX®可帮助在巴勒斯坦的初级预防中心筛查出存在高骨折风险的人群[51]。
FRAX®在实际运用中出现的问题在瑞士,研究发现他们目前提出的FRAX®阈值不能把50%~70%的研究人群在骨折以前就将他们归类到高风险行列[52],需要及时修正。在意大利,WHO推荐的FRAX®对于全科医师来说使用起来存在一定障碍[53]。在韩国,有88%的人知道FRAX®,其中只有19.3%的人使用[54]。很多国家缺少流行病学资料,对FRAX®评价效果的评估带来影响[55]。
FRAX®在不同学科领域的使用OP性骨折继发于很多疾病。溃疡性结肠炎患者是得OP的高危人群,FRAX®评价骨折风险指导干预[56]。肌少症患者,联合四肢骨骼肌质量、握力、步行速度能够提高FRAX®预测中国老年男性骨折发生率的能力[57]。对于肥胖人群,FRAX®已被证实有预测价值[58]。富马酸替诺福韦酯治疗艾滋病及慢性肝炎患者时可使其骨矿物质流失,研究表明,FRAX®对其预测结果与BMD检测结果一致[59]。口腔科方面,FRAX®评价提示高骨折风险的绝经后妇女已经患有严重到难以治疗的牙周疾病,提示牙科医生在处理患有牙周病的绝经后女性的时候,应该关注到他们的FRAX®评估值可能预示着较高的骨折风险[60]。FRAX®把大部分接受肾移植的患者分类为低骨折风险组,但是临床医生在接受肾移植手术的患者人群中常规使用FRAX®之前,仍建议逐个患者确认[61]。患有慢性肾病的患者的骨折风险升高,FRAX®能够判断其骨折概况,研究结果表明其表现与BMD相当[62]。前列腺癌患者接受雄激素阻断治疗时的骨丢失,FRAX®也可对其进行评估[63]。研究者建议在所有库欣综合征患者中使用FRAX®评估,并采用17%作为干预阈值,尽可能逆转OP和骨折风险[64]。俄罗斯针对100个长期吸烟的患有COPD的男性进行的研究表明,FRAX®的应用揭示患有COPD的患者存在OP性骨折风险成为可能[65]。
FRAX®的应用前景统计发现,FRAX®在非洲和部分南亚国家使用相对较少[66],在我国也尚未被广泛接受。Wang等[67]利用FRAX®进行脆性骨折风险评估的效果较为满意,所以虽然该工具并非WHO推荐的官方工具,且近年来也没有对其再进行充分的评估[68],相信随着社会需求的不断增大,大家根据各地人群的特点进行修正和正确使用,其应用也将会得到不断发展。
[1] | Aguilera-Barreiro de LA, Dávalos-Vázquez KF2, Jimé-nez-Méndez C3, et al. The relationship of nutritional status, body and mandibular bone mineral density, tooth loss and fracture risk (FRAX) in pre-and postmeno-pausal women with periodontitis[J]. Nutr Hosp, 2014, 29: 1419–26. |
[2] | Kröger H. FRAX fracture risk calculator in the diagnostics and treatment of osteoporosis[J]. Duodecim, 2013, 129: 1149–1152. |
[3] | Koh LK, Sedrine WB, Torralba TP, et al. A simple tool to identify asian women at increased risk of osteoporosis[J]. Osteoporos Int, 2001, 12: 699–705. DOI:10.1007/s001980170070 |
[4] | Yang L, Palermo L, Black DM, et al. Prediction of incident hip fracture with the estimated femoral strength by finite element analysis of DXA scans in the study of osteoporotic fractures[J]. J Bone Miner Res, 2014, 29: 2594–600. DOI:10.1002/jbmr.2291 |
[5] | Binkley N, Adler R, Bilezikian JP. Osteoporosis diagnosis in men: the T-score controversy revisited[J]. Curr Osteoporos Rep, 2014, 12: 403–409. DOI:10.1007/s11914-014-0242-z |
[6] | Pang WY, Inderjeeth CA. FRAX without bone mineral density versus osteoporosis self-assessment screening tool as predictors of osteoporosis in primary screening of individuals aged 70 and older[J]. J Am Geriatr Soc, 2014, 62: 442–446. DOI:10.1111/jgs.12696 |
[7] | Garduño-García JJ, Pérez-Espejel I, Huitrón-Bravo G, et al. Osteoporotic fracture risk evaluation. Options when central densitometry is not available[J]. Rev Med Inst Mex Seguro Soc, 2014, 52: 674–79. |
[8] | Pluskiewicz W, Adamczyk P, Franek E, et al. FRAX calculator and Garvan nomogram in male osteoporotic population[J]. Aging Male, 2014, 17: 174–182. DOI:10.3109/13685538.2013.875991 |
[9] | Pang WY. FRAX without bone mineral density versus osteoporosis self-assessment screening tool as predictors of osteoporosis in primary screening of individuals aged 70 and older[J]. J Am Geriatr Soc, 2014, 62: 442–446. DOI:10.1111/jgs.12696 |
[10] | Carranza-Lira S, Lanuza-López MC, Sandoval-Barragán MP. Comparison fracture risk calculated by FRAX tool[J]. Best Pract Res Clin Endocrinol Metab, 2014, 28: 767–782. DOI:10.1016/j.beem.2014.04.005 |
[11] | Gadam RK, Schlauch K, Izuora KE. Frax prediction without BMD for assessment of osteoporotic fracture risk[J]. Endocr Pract, 2013, 19: 780–784. DOI:10.4158/EP12416.OR |
[12] | El Maghraoui A, Sadni S, Jbili N, et al. The discriminative ability of FRAX, the WHO algorithm, to identify women with prevalent asymptomatic vertebral fractures: a cross-sectional study[J]. BMC Musculoskelet Disord, 2014, 15: 365. DOI:10.1186/1471-2474-15-365 |
[13] | McCloskey E. Assessing fracture risk in patients with osteoporosis[J]. Practitioner, 2013, 257: 19–21. |
[14] | Sornay-Rendu E, Duboeuf F, Boutroy S, et al. How to predict fragility fracture beyond ten years? The OFELY study[J]. J Clin Endocrinol Metab, 2014, 24: jc20142601. |
[15] | Egsmose EL, Birkvig M, Buhl T, et al. FRAX fracture risk in women with a recent fracture of the distal forearm: agreement between assessments with and without bone mineral density and impact of measurement side in the individual patient[J]. Clin Rheumatol, 2015, 34: 1265–72. DOI:10.1007/s10067-014-2640-0 |
[16] | Lee HS, Lee SH, Chung YS, et al. Usefulness of fracture risk assessment tool using lumbar bone mineral density in prediction of osteoporotic vertebral fracture[J]. J Korean Neurosurg Soc, 2015, 58: 346–349. DOI:10.3340/jkns.2015.58.4.346 |
[17] | Johansson H, Kanis JA, Odén A, et al. Impact of femoral neck and lumbar spine BMD discordances on FRAX probabilities in women: a meta-analysis of international cohorts[J]. Calcif Tissue Int, 2014, 95: 428–435. DOI:10.1007/s00223-014-9911-2 |
[18] | Azagra R, Roca G, Encabo G, et al. FRAX® tool, the WHO algorithm to predict osteoporotic fractures: the first analysis of its discriminative and predictive ability in the Spanish FRIDEX cohort[J]. BMC Musculoskelet Disord, 2012, 13: 204. DOI:10.1186/1471-2474-13-204 |
[19] | Silva BC, Bilezikian JP. Trabecular bone score: perspectives of an imaging technology coming of age[J]. Arq Bras Endocrinol Metabol, 2014, 58: 493–503. DOI:10.1590/0004-2730000003456 |
[20] | Jiang XS, Li JY, Zhang WJ, et al. Relationship between fracture risk evaluated by FRAX tool and spinal curvature[J]. Zhongguo Gu Shang, 2013, 26: 730–734. |
[21] | Gonnelli S, Caffarelli C, Giordano N, et al. The prevention of fragility fractures in diabetic patients[J]. Aging Clin Exp Res, 2015, 27: 115–24. DOI:10.1007/s40520-014-0258-3 |
[22] | Leslie WD, Morin SN, Lix LM, et al. Does diabetes modify the effect of FRAX risk factors for predicting major osteoporotic and hip fracture?[J]. Osteoporos Int, 2014, 25: 2817–2824. DOI:10.1007/s00198-014-2822-2 |
[23] | Targownik LE, Bernstein CN, Nugent Z, et al. Inflammatory bowel disease and the risk of fracture after controlling for FRAX[J]. J Bone Miner Res, 2013, 28: 1007–1013. DOI:10.1002/jbmr.1848 |
[24] | Brennan SL, Leslie WD, Lix LM, et al. FRAX provides robust fracture prediction regardless of socioeconomic status[J]. Osteoporos Int, 2014, 25: 61–69. DOI:10.1007/s00198-013-2525-0 |
[25] | Nayak S, Edwards DL, Saleh AA, et al. Performance of risk assessment instruments for predicting osteoporotic fracture risk: a systematic review[J]. Osteoporos Int, 2014, 25: 23–49. DOI:10.1007/s00198-013-2504-5 |
[26] | Unni S, Yao Y, Milne N, et al. An evaluation of clinical risk factors for estimating fracture risk in postmenopausal osteoporosis using an electronic medical record database[J]. Osteoporos Int, 2015, 26: 581–587. DOI:10.1007/s00198-014-2899-7 |
[27] | Duncan R, Francis RM, Jagger C, et al. Magnitude of fragility fracture risk in the very old-are we meeting their needs? The Newcastle 85+ Study[J]. Osteoporos Int, 2015, 26: 123–30. DOI:10.1007/s00198-014-2837-8 |
[28] | Grigorie D, Sucaliuc A, Johansson H, et al. FRAX-based intervention and assessment thresholds for osteoporosis in Romania[J]. Arch Osteoporos, 2013, 8: 164. DOI:10.1007/s11657-013-0164-x |
[29] | Edwards FD, Grover ML, Cook CB, et al. Use of FRAX as a determinant for risk-based osteoporosis screening may decrease unnecessary testing while improving the odds of identifying treatment candidates[J]. Womens Health Issues, 2014, 24: 629–34. DOI:10.1016/j.whi.2014.06.006 |
[30] | Ackman JM, Lata PF, Schuna AA, et al. Bone health evaluation in a veteran population: a need for the Fracture Risk Assessment Tool (FRAX)[J]. Ann Harmacother, 2014, 48: 1288–1293. DOI:10.1177/1060028014542149 |
[31] | Roux S, Cabana F, Carrier N, et al. The World Health Organization Fracture Risk Assessment Tool (FRAX) underestimates incident and recurrent fractures in consecutive patients with fragility fractures[J]. J Clin Endocrinol Metab, 2014, 99: 2400–2408. DOI:10.1210/jc.2013-4507 |
[32] | Vogrig E, Della Martina M, Xodo S, et al. Identification of patients with high osteoporosis risk: analysis of FRAX and phalangeal ultrasonography in a female population in North-East Italy[J]. Minerva Inecol, 2014, 66: 447–453. |
[33] | Ettinger B, Ensrud KE, Blackwell T, et al. Osteopo-rotic Fracture in Men (MrOS) Study Research Group.Performance of FRAX in a cohort of community-dwelling, ambulatory older men: the steoporotic Fractures in Men (MrOS) study[J]. Osteoporos Int, 2013, 24: 1185–1193. DOI:10.1007/s00198-012-2215-3 |
[34] | Ensrud KE, Taylor BC, Peters KW, et al. Implica-tions of expanding indications for drug treatment to prevent fracture in older men in United States: cross sectional and longitudinal analysis of prospective cohort study[J]. BMJ, 2014, 349: 4120. DOI:10.1136/bmj.g4120 |
[35] | Sund R, Honkanen R, Johansson H, Odén A, et al. Evaluation of the FRAX model for hip fracture predictions in the population-based Kuopio Osteoporosis Risk Factor and Prevention Study (OSTPRE)[J]. Calcif Tissue Int, 2014, 95: 39–45. DOI:10.1007/s00223-014-9860-9 |
[36] | Czerwiński E, Borowy P, Kumorek A, et al. Fracture risk prediction in outpatients from Krakow Region using FRAX tool versus fracture risk in 11-year follow-up[J]. Ortop Traumatol Rehabil, 2013, 15: 617–628. DOI:10.5604/15093492.1091517 |
[37] | Kanis JA, McCloskey E, Branco J, et al. Goal-directed treatment of osteoporosis in Europe[J]. Osteoporos Int, 2014, 25: 2533–2543. DOI:10.1007/s00198-014-2787-1 |
[38] | Leslie WD, Majumdar SR, Lix LM, et al. change in FRAX score be used to "treat to target"? A population-based cohort study[J]. J Bone Miner Res, 2014, 29: 1074–1080. DOI:10.1002/jbmr.2151 |
[39] | Elvey MH, Pugh H, Schaller G, et al. Failure in the application of fragility fracture prevention guidelines[J]. Ann R Coll Surg Engl, 2014, 96: 381–385. DOI:10.1308/003588414X13946184901164 |
[40] | Beattie KA, Ioannidis G, Macdermid JC, et al. Appropriate osteoporosis treatment by family physicians in response to FRAX vs CAROC reporting: results from a randomized controlled trial[J]. J Clin Densitom, 2014, 17: 458–465. DOI:10.1016/j.jocd.2013.09.007 |
[41] | Hagino H. Criteria for initiation of pharmacological treatment by Japanese 2011 guidelines for prevention and treatment of osteoporosis[J]. Clin Calcium, 2014, 24: 339–347. |
[42] | Lee JH, Suh YS, Koh JH, et al. The risk of osteoporotic fractures according to the FRAX model in Korean patients with rheumatoid arthritis[J]. J Korean Med Sci, 2014, 29: 1082–1089. DOI:10.3346/jkms.2014.29.8.1082 |
[43] | Goh LH, How CH, Lau TC. Male osteoporosis: clinical approach and management in family practice[J]. Singapore Med J, 2014, 55: 353–357. |
[44] | McGowan B, Kanis JA, Johansson H, et al. Development and application of FRAX in the management of osteoporosis in Ireland[J]. Arch Osteoporos, 2013, 8: 146. DOI:10.1007/s11657-013-0146-z |
[45] | Marques A, Mota A, Canhão H, et al. A FRAX model for the estimation of osteoporotic fracture probability in Portugal[J]. Acta Reumatol Port, 2013, 38: 104–112. |
[46] | Yeap SS, Hew FL, Lee JK, et al. The Malaysian Clinical Guidance on the management of postmenopausal osteoporosis, 2012: a summary[J]. Int J Rheum Dis, 2013, 16: 30–40. DOI:10.1111/apl.2013.16.issue-1 |
[47] | Grigorie D, Sucaliuc A, Johansson H, et al. Incidence of hip fracture in Romania and the development of a Romanian FRAX model[J]. Calcif Tissue Int, 2013, 92: 429–436. DOI:10.1007/s00223-013-9697-7 |
[48] | Jaller-Raad JJ, Jaller-Char JJ, Lechuga-Ortiz JA, et al. Incidence of hip fracture in Barranquilla, Colombia, and the development of a Colombian FRAX model[J]. Calcif Tissue Int, 2013, 93: 15–22. DOI:10.1007/s00223-013-9717-7 |
[49] | Amin TT, Al Owaifeer A, Al-Hashim H, et al. Osteoporosis among older Saudis: risk of fractures and unmet needs[J]. Arch Osteoporos, 2013, 8: 118. DOI:10.1007/s11657-013-0118-3 |
[50] | Lekamwasam S. Sri Lankan FRAX model and country-specific intervention thresholds[J]. Arch Osteoporos, 2013, 8: 148. DOI:10.1007/s11657-013-0148-x |
[51] | Clark P, Ramírez-Pérez E, Reyes-Lpóez A. Assess-ment and intervention thresholds to detect cases at risk of osteoporosis and fragility fractures with FRAX® in a mexican population for the first level of healthcare[J]. Gac Med Mex, 2016, 152: 22–31. |
[52] | Aubry-Rozier B, Stoll D, Krieg MA, et al. What was your fracture risk evaluated by FRAX® the day before your osteoporotic fracture?[J]. Clin Rheumatol, 2013, 32: 219–223. DOI:10.1007/s10067-012-2106-1 |
[53] | Michieli R, Carraro AM. General Practitioner and FRAX® (computer-based algorithm)[J]. Clin Cases Miner Bone Metab, 2014, 11: 120–122. |
[54] | Ha YC, Lee YK, Lim YT, et al. Physicians' attitudes to contemporary issues on osteoporosis management in Korea[J]. J Bone Metab, 2014, 21: 143–149. DOI:10.11005/jbm.2014.21.2.143 |
[55] | Lam A, Leslie WD, Lix LM, et al. Major osteoporotic to hip fracture ratios in canadian men and women with Swedish comparisons: a population-based analysis[J]. J Bone Miner Res, 2014, 29: 1067–1073. DOI:10.1002/jbmr.2146 |
[56] | Piodi LP, Poloni A, Ulivieri FM. Managing osteoporo-sis in ulcerative colitis: something new?[J]. World J Gastroenterol, 2014, 20: 14087–14098. DOI:10.3748/wjg.v20.i39.14087 |
[57] | Yu R, Leung J, Woo J. Sarcopenia Combined with FRAX probabilities improves fracture risk prediction in older chinese men[J]. J Am Med Dir Assoc, 2014, 15: 918–923. DOI:10.1016/j.jamda.2014.07.011 |
[58] | Premaor MO, Comim FV, Compston JE. Obesity and fractures[J]. Arq Bras Endocrinol Metabol, 2014, 58: 470–477. DOI:10.1590/0004-2730000003274 |
[59] | Gill US, Zissimopoulos A, Al-Shamma S, et al. Assessment of bone mineral density in tenofovir-treated patients with chronic hepatitis B: can the fracture risk assessment tool identify those at greatest risk?[J]. J Infect Dis, 2015, 211: 374–382. DOI:10.1093/infdis/jiu471 |
[60] | Alli F, Bhandal GK, Thacker HL, et al. Can the FRAX tool be a useful aid for clinicians in referring women for periodontal care?[J]. Menopause, 2015, 22: 75–78. DOI:10.1097/GME.0000000000000272 |
[61] | Naylor KL, Leslie WD, Hodsman AB, et al. FRAX predicts fracture risk in kidney transplant recipients[J]. Transplantation, 2014, 97: 940–945. DOI:10.1097/01.TP.0000438200.84154.1a |
[62] | Jamal SA, West SL, Nickolas TL. The clinical utility of FRAX to discriminate fracture status in men and women with chronic kidney disease[J]. Osteoporos Int, 2014, 25: 71–76. DOI:10.1007/s00198-013-2524-1 |
[63] | Prakash G, Gautam G. Optimal bone health management strategies in patients with prostate cancer[J]. Indian J Urol, 2013, 29: 89–99. DOI:10.4103/0970-1591.114024 |
[64] | Trementino L, Ceccoli L, Concettoni C, et al. Fracture risk assessment before and after resolution of endogenous hypercortisolism: Is the FRAX® algorithm useful?[J]. J Endocrinol Invest, 2014, 37: 957–965. DOI:10.1007/s40618-014-0126-1 |
[65] | Kochetova EV, Vezikova NN. Ten-year risk of osteoporotic fractures in patients with chronic obstructive pulmonary disease estimated by FRAX method[J]. Klin Med (Mosk), 2013, 91: 35–37. |
[66] | Kanis JA, Johansson H, Oden A, et al. Epidemiology and Quality of Life Working Group of IOF.Worldwide uptake of FRAX[J]. Arch Osteoporos, 2014, 9: 166. DOI:10.1007/s11657-013-0166-8 |
[67] | Wang J, Wang X, Fang Z, et al. The effect of FRAX on the prediction of osteoporotic fractures in urban middle-aged and elderly healthy Chinese adults[J]. Clinics (Sao Paulo), 2017, 72: 289–293. DOI:10.6061/clinics |
[68] | Nathan F, Susan LN, Suzanne RH. Clarifying WHO's position on the FRAX® tool for fracture prediction[J]. Bull World Health Organ, 2016, 94: 862. DOI:10.2471/BLT.16.188532 |
(收稿日期:2017-11-07) |