原发性甲状旁腺功能亢进症(primary hyperparathyroidism,PHPT,简称原发性甲旁亢)是由于甲状旁腺本身病变引起的甲状旁腺素(parathyroid hormone,PTH)合成、分泌过多导致的钙、磷和骨代谢紊乱的一种全身性疾病,表现为骨吸收增加的骨骼病变、泌尿系结石、高钙血症和低磷血症等。其中的一类特殊类型为遗传性PHPT(hereditary PHPT),表现为有家族史或者作为某种综合征的一部分,在PHPT中约占10%,往往呈常染色体显性遗传。遗传性PHPT包括:多发性内分泌腺瘤病1型(multiple endocrine neonplasia type1,MEN1)、MEN2A、MEN4、家族性低尿钙性高钙血症(familial hypocalciuric hypercalcemia,FHH)、新生儿重症甲状旁腺功能亢进症(neonatal severe hyperparathyroidism,NSHPT)、常染色体显性甲状旁腺功能亢进症(autosomal dominant moderate hyperparathyroidism,ADMH)、甲状旁腺功能亢进症-颌骨肿瘤综合征(hyperparathyroidism-jaw tumor syndrome,HPT-JT)、家族性孤立性原发性甲状旁腺功能亢进症(familial isolated primary hyperparathyroidism,FIHPT)(表 1)。遗传性PHPT的致病机制、临床表现、治疗方法与散发性PHPT(sporadic PHPT,SHPT)均有所不同,现综述如下。
综合征(OMIM) | 基因 | 编码蛋白 | PHPT特征 | 其他主要表型 | PHPT手术方式 |
MEN1 (131100) | MEN1 | Menin | 高外显率(约95%),多为轻型。多腺体受累,多为增生,也有腺瘤,腺癌罕见 | PNET,垂体 肿瘤 | SPTX或TPTX合并自体甲状旁腺移植+胸腺切除术 |
MEN2A(171400) | RET | RET | 低外显率(20%~30%),多为轻型或无症状型,单/多腺体受累,增生或腺瘤 | MTC,PCC | 初次颈部手术:切除病变甲状旁腺; MTC术后:颈部探查+切除病变甲状旁腺或(和)自体移植 |
MEN4 (610755) | CDKN1B | p27Kip1 | 高外显率(近100%),发病年龄较晚(约56岁),单/多腺体受累,增生或腺瘤 | 尚未确定,垂体肿瘤、PNET、肾上腺肿瘤等 | 尚无定论 |
FHH1 (145980) | CaSR | CaSR | 常无症状,伴低尿钙,轻度增生 | - | 不推荐手术治疗,无症状者仅需观察;有高钙血症症状者可选择西那卡塞。 发展为症状性PHPT可行SPTX |
FHH2 (145981) | GNA11 | Gα11 | |||
FHH3 (600740) | AP2S1 | AP2σ1 | |||
NSHPT (239200) | CaSR | CaSR | 出生后6月内威胁生命的高钙血症,伴显著的低尿钙,重度增生 | 无 | 紧急TPTX |
ADMH (601199) | CaSR | CaSR | 仅一个家系报道:血钙仅轻度升高,无低尿钙,增生或腺瘤 | 无 | 根据术中颈部探查结果决定 |
HPT-JT (145001) | CDC73 | Parafibromin | 高外显率(>95%),单腺体受累多见,腺癌或不典型腺瘤风险高(21.6%),可伴囊性变 | 颌骨骨性纤维瘤、肾脏肿瘤、子宫肿瘤 | 单腺体:局限性甲状旁腺肿瘤切除术; 多腺体:SPTX或TPTX; 腺癌:肿瘤的完整扩大切除 |
FIHPT (145000) | CaSR, CDC73, MEN1 | - | 异质性强,单/多腺体受累,增生/腺瘤/腺癌 | 无 | 单腺体受累:局限性甲状旁腺肿瘤切除术; 多腺体受累:SPTX或TPTX合并自体移植+胸腺切除术 |
PHPT:原发性甲状旁腺功能亢进症;MEN:多发性内分泌腺瘤病;FHH:家族性低尿钙性高钙血症;NSHPT:新生儿重症甲状旁腺功能亢进症;ADMH:常染色体显性甲状旁腺功能亢进症;HPT-JT:甲状旁腺功能亢进症-颌骨肿瘤综合征;FIHPT:家族性孤立性原发性甲状旁腺功能亢进症;PNET:胰腺神经内分泌肿瘤;MTC:甲状腺髓样癌;PCC:嗜铬细胞瘤;SPTX:甲状旁腺次全切除术;TPTX:甲状旁腺全切除术 |
MEN1(OMIM#131100)是呈常染色体显性遗传的肿瘤综合征,致病基因为定位于染色体11q13上的MEN1基因,编码一种抑癌蛋白——Menin蛋白[1],近70%的遗传性PHPT是由MEN1基因突变引起,人群发病率约为0.25%[2]。MEN1典型的临床表现是由PHPT、胰腺神经内分泌肿瘤、垂体肿瘤组成的三联征,其他较少见的肿瘤包括肾上腺肿瘤、脂肪瘤、类癌、血管纤维瘤等[3]。满足以下3项中的1项即可诊断MEN1[4]:(1)临床诊断:患者有2个或2个以上MEN1相关肿瘤;(2)家系诊断:具有一个MEN1相关的肿瘤,同时有一级家属为MEN1患者;(3)遗传诊断:携带有MEN1基因突变,可无临床表现或实验室依据,如MEN1基因突变携带者。目前绝大部分研究未发现MEN1的临床表型与基因型具有明显的相关性[5]。
PHPT是MEN1最常见的内分泌疾病(国外文献报告约95%),且超过85%的MEN1患者以PHPT为首发表现,50岁时PHPT的外显率近100%[3]。目前直接将MEN1相关的PHPT(MEN1-HPT)与SHPT相比的研究罕见,Eller-Vainicher等[6]报道两者的平均起病年龄分别为44.2岁及60.1岁(P=0.000);合并肾结石/钙化的比例分别为57.8%及55.2%(P=0.789);MEN1-HPT患者的骨密度(bone mineral density,BMD)更低(腰椎Z值:-1.33 vs. -0.74,P=0.008;股骨颈Z值:-1.13 vs. -0.60,P=0.002);但MEN1-HPT生化改变往往较轻(PTH:113.8 vs. 173.7 pg/mL,P=0.001;ALP:127.4 vs. 133.3 IU/L,P=0.569),以上结果需要更多研究证实。MEN1-HPT的病理类型多为甲状旁腺增生,且常为多腺体受累。目前在MEN1-HPT患者中仅有11例甲状旁腺腺癌报道,其中Mayo clinic总结348例MEN1-HPT患者中仅1例为腺癌(0.28%)。MEN1-HPT患者首选手术治疗,但是由于MEN1-HPT患者具有多腺体受累及术后易复发等特点[7],国外指南推荐的首选术式为双侧颈部探查合并甲状旁腺次全切除术(subtotal parathyroidectomy,SPTX,即切除至少3.5个腺体),鉴于15%的患者甲状旁腺异位于胸腺以及MEN1患者可合并胸腺类癌,因此指南还建议行预防性胸腺切除术。对于甲状旁腺病变广泛的患者也可考虑行甲状旁腺全切术(total parathyroidectomy,TPTX)加自体甲状旁腺移植[8]。局限性甲状旁腺肿瘤切除术后甲状旁腺功能减退症的发生率较低,但该术式术后的复发率是SPTX或TPTX的3.11倍(95% CI:2.00~4.84,P=0.000)[9],因此应慎重选择局限性甲状旁腺肿瘤切除术。对于无症状MEN1-HPT患者的手术时机选择目前仍有争议。当有手术禁忌时,可选择拟钙剂西那卡塞降低血钙[10]。
MEN1基因突变分析不仅可以协助先证者的临床诊断,还有利于早期诊治突变基因携带者、及避免对未携带突变的家系成员进行不必要的随访。因此,国外指南[8]推荐在以下人群中尽早行MEN1基因检查:(1)临床诊断为MEN1的患者。(2)已知MEN1基因突变携带者的一级亲属;(3)MEN1临床表现不典型但强烈怀疑该诊断者,包括:①甲状旁腺肿瘤的起病年龄小于30岁;②任何年龄诊断的多腺体受累的甲状旁腺肿瘤、胃泌素瘤、多发的胰腺神经内分泌肿瘤;③具有两个或以上MEN1相关的非典型性肿瘤(比如甲状旁腺肿瘤合并肾上腺肿瘤)。目前文献报道大约有5%~25%的MEN1患者未检测到MEN1基因突变,可能与以下原因相关:(1)突变检测方法:常规PCR无法检测大片段缺失突变,指南推荐常规应用多重连接探针扩增技术(multiplex ligation-dependent probe amplification,MLPA)提高MEN1患者突变检出率。(2)拟表型:拟表型是指环境因素的作用引起的表型变化类似于某一基因突变而引起的表型,如一些无家族史的散发性MEN1患者,这些患者的突变检出率可低于5%。(3)其他:未知致病基因有待发现。
MEN2AMEN2是由原癌基因RET基因激活性突变引起,该基因定位于染色体10q11.21,编码一个跨膜酪氨酸激酶受体超家族的ret蛋白,其配体为称作GDNF(Glial cell line-derived neurotrophic factor)的神经营养因子[11-12]。根据组织受累情况,MEN2分为3个亚型,仅MEN2A(OMIM#171400)可合并PHPT,最常见病变为甲状腺髓样癌(medullary thyroid carcinoma,MTC),约50%伴有嗜铬细胞瘤(pheochromocytoma,PCC),20%~30%伴有PHPT。
MEN2A中,PHPT常在诊断MTC多年之后被诊断,文献报道PHPT的首诊年龄中位数约38岁(1~70岁),无症状型占68%~84%,病理类型可为腺瘤或增生,目前尚无腺癌报道,多数为单腺体受累,多腺体受累(1%~17%)不如MEN1常见[13-14]。MEN2A-HPT治疗仍以手术为主,对同时患有PCC的患者,应先行PCC切除术。对于未行颈部手术的PHPT患者,目前推荐切除病变的甲状旁腺腺体,该术式后复发及未缓解率较低且并发症少[13-15]。当MTC术后诊断PHPT时,由于术后颈部解剖结构的改变,第二次术前甲状旁腺肿瘤定位检查非常必要,美国甲状腺协会(American Thyroid Association,ATA)在2015年的MTC指南中建议选择双侧颈部探查,探查发现单个肿瘤及不少于1个正常甲状旁腺、且术中PTH结果正常时可中止手术;当探查发现单个肿瘤但无法探查到其余甲状旁腺腺体时,术中PTH正常时可中止手术,无条件监测术中PTH则可自体移植部分切除的甲状旁腺;当发现单个肿瘤且第1次颈部手术记录有4个甲状旁腺时,可留一部分切除的正常甲状旁腺组织于颈部或移植在其他部位,也可低温保存以备用[16]。
98%的MEN2患者携带RET基因突变,且MEN2的表型与基因型存在相关性,因此可以根据基因型判断预后及指导治疗[17]。85%的MEN2患者突变位点位于第11外显子(密码子634),15%的突变位于第10外显子(密码子609、611、618和620),其余突变位于第13、14、15以及16外显子,C634R或C634Y突变伴发PHPT的比例最高[18]。RET基因检测对于诊断、随访意义重大,可先常规筛查以上几个外显子,ATA-MTC指南推荐携带C634及A883F突变者从11岁开始监测PTH及血钙(但也有少数文献报道PHPT发病早至2、6、7及10岁);携带除M918T、C634以及A883F以外突变的患者从16岁开始监测PHPT。
MEN42002年,Fritz等[19]首次在大鼠中描述了一种MEN表型,表现为双侧肾上腺嗜铬细胞瘤、多发肾上腺外嗜铬细胞瘤、双侧甲状腺髓样细胞增生、双侧甲状旁腺增生以及垂体肿瘤,并未发现Ret及Men1基因突变。2006年,Pellegata等[20]发现该大鼠的MEN表型是由Cdkn1b基因突变引起,并首次在人类中报道MEN1基因阴性的MEN表型由CDKN1B基因的无义突变引起。不同于大鼠的隐性遗传方式,该表型在人类呈显性遗传,后正式将其定义为MEN4(OMIM#610755)。该基因位于染色体12p13,编码196个氨基酸的细胞周期依赖性激酶抑制剂p27Kip1(cyclin-dependent kinase inhibitor p27Kip1),p27主要功能是控制细胞从G1期进入S期[21]。
目前为止,共报告了14例由CDKN1B基因失活性突变致病的患者,均有PHPT,其他组分包括垂体前叶肿瘤、十二指肠/胰腺/宫颈神经内分泌肿瘤、肾上腺肿瘤、Zollinger-Ellison综合征、子宫肌瘤等[20, 22-33]。PHPT常为首发表现,其特点为发病年龄较晚(约56岁)、单腺体受累与多腺体受累均有,由于例数太少,尚不足以对表型进行定义及分析,治疗方面亦尚无定论。由于从临床表现上难以区别MEN4与MEN1,对于MEN1基因及RET基因阴性的MEN患者,有必要进行CDKN1B基因筛查。
FHH、NSHPT以及ADMHFHH是一种异质性疾病,呈常染色体显性遗传,目前有3个亚型被报道。FHH1(OMIM#145980)由CaSR基因杂合性失活突变所致,但也有报道发现纯合性CaSR基因突变也可引起FHH1表型,这与CaSR基因不同位点突变对蛋白功能影响的程度相关[34-35]。CaSR基因定位于染色体3q21.1,编码1078个氨基酸的G蛋白偶联受体C家族钙敏感受体(calcium sensing receptor,CaSR)蛋白,该蛋白在甲状旁腺、肾脏及甲状腺滤泡旁C细胞有丰富表达,CaSR在受到细胞外钙离子浓度刺激后,通过Gq和G11亚基激活磷脂酶C,调节细胞内钙离子浓度以调控PTH分泌,最终维持血钙稳态[36]。根据CaSR信号传导通路,Nesbit等[37]在2013年发现了FHH3(OMIM#600740)的致病基因为定位于染色体19q13.3的AP2S1基因,编码衔接蛋白2(adaptor protein 2,AP2)的σ1亚基,该基因突变时会降低表达CaSR的细胞对细胞外钙离子浓度的敏感性,并降低CaSR的内化。该团队随后又报道了编码G11亚基的GNA11基因为FHH2(OMIM#145981)的致病基因,该基因定位于染色体19p[38]。FHH患者中,大约65%为FHH1,20%以上为FHH2,约10%为FHH3[37-38]。
FHH患者的特征为持续终身的高钙血症、低尿钙症、PTH不适当高分泌。临床表现通常无症状,少数病例可有胰腺炎、软骨钙质沉着症以及类似PHPT的临床表现。Hannan等[39]报道FHH3与FHH1相比,前者可合并认知障碍、血钙及血镁升高更显著(血钙:2.87 mmol/L vs. 2.76 mmol/L,P<0.001;血镁:1.04 mmol/L vs. 0.95 mmol/L,P<0.01)、尿钙/尿肌酐清除率([24h尿钙/血钙]/[24h尿肌酐/血肌酐],UCCR)更低(0.004 vs. 0.007,P<0.01),用CMCR指数(sCa×sMg/100×UCCR)≥5.0来诊断FHH3的敏感度与特异度分别为83%、86%。FHH的生化表现与PHPT极为相似,鉴于手术不能改变FHH相关基因突变引起的血钙调定点的异常而无法使患者获益,应避免行甲状旁腺手术,因此临床鉴别十分重要。首先,UCCR是重要的鉴别指标,其在FHH患者中往往<0.01,而PHPT患者常伴有尿钙升高[40]。需要注意的是PHPT合并维生素D缺乏、或肾功能不全的患者,其UCCR也可低于0.01[41]。第二,FHH生化改变较轻,包括轻度高钙血症、PTH多在正常参考范围内或轻度增高、轻度低磷血症。第三,由于FHH患者甲状旁腺组织轻度增生,因此其术前定位检查常为阴性。最后,FHH患者无肾脏及骨骼受累[42]。大多数FHH无症状,因此不需要治疗。对于有高钙血症相关症状者,研究者发现调节CaSR构型的拟钙剂西那卡塞能有效缓解高钙血症及高PTH血症[43]。当FHH发展为PHPT时,尽管存在术后持续性高钙血症的高风险,仍然推荐进行甲状旁腺次全切除术[44]。
NSHPT(OMIM#239200)罕见,多由CaSR基因纯和性失活性突变引起,是FHH1的极重型。NSHPT表现为出生后6个月内起病的威胁生命的重度高钙血症,伴PTH显著升高及低尿钙症,临床特征为肌张力减退、多尿、骨质脱钙、骨折以及呼吸困难等[45]。唯一有效的治疗方法就是进行及时的甲状旁腺全部切除术,在此之前需要紧急使用静脉氯化钠注射液输注及双膦酸盐类药物处理高钙血症以获取手术时机[45]。目前也有研究发现西那卡塞能迅速、持续地降低NSHPT患者的血钙水平[46],但需要更多的实验进一步评价该药物作用于NSHPT患者的长期疗效及不良反应。
ADMH(OMIM+601199)非常罕见,目前只有一例瑞典家系被报道,呈显性遗传,为FHH的不典型表现型[47]。遗传分析发现该家系的病因为CaSR基因的p.F881L突变。该家系的20例患者的疾病特点为:发病年龄早(22~27岁),血钙水平仅轻度升高(2.80±0.01 mmol/L),PTH水平不适当增高而未被高钙血症抑制,其平均值为38.4±2.4 ng/L(正常范围:12~55 ng/L),尿钙不低(UCCR为0.012±0.002),某些患者还有肾结石,病理类型既有增生也有腺瘤,既有单腺体受累也有多腺体受累[47]。
HPT-JT综合征HPT-JT综合征(OMIM#145001)较罕见,呈常染色体显性遗传,其致病基因CDC73基因(既往称作HRPT2基因)定位于染色体1q31.2,编码531个氨基酸的抑癌蛋白Parafibromin蛋白,该蛋白为人类Paf1/RNA聚合酶Ⅱ复合体的组成部分,参与转录调控[48]。多项研究表明Parafibromin蛋白缺失表达可作为鉴别甲状旁腺腺癌(parathyroid carcinoma,PC)与良性甲状旁腺病变(增生或腺瘤)的标志[49-50]。CDC73基因突变的外显率不高,临床表现多样。早发的PHPT是HPT-JT的最主要表现(>95%),仅一部分患者伴发颌骨骨性纤维瘤(ossifying fibroma)(占30.5%),其他非内分泌器官病变有肾脏受累(占13.3%,包括错构瘤、多囊肾、Wilms瘤)、女性患者可合并早发子宫肌瘤或腺肌瘤样息肉(占女性患者的57.3%)[48, 51]。CDC73基因突变的基因型与表型的相关性目前尚未确定。
HPT-JT/HPT的发病年龄多在成年早期,病变较轻,病理类型为腺瘤居多且多伴囊性改变。但需要注意的是,HPT-JT/HPT病理为腺癌或者不典型腺瘤的风险明显增高(约21.6%),此时患者的生化改变明显,甚至可出现高钙危象[51]。治疗方面,HPT-JT/HPT的手术方式仍存在争议,既往认为多腺体受累以及PC风险增加而采用SPTX或TPTX,但是现在越来越多文献报道单腺体受累更常见(约80%),并且初次手术至复发的无病缓解时间在10年以上,所以认为局限性甲状旁腺肿瘤切除术可能更合适,并且此术式术后甲旁减发生风险低、且能为不可避免的再次手术提供便利[52-53]。当怀疑为腺癌时,比如肿瘤体积大、侵袭周边组织或者血钙或PTH水平明显升高时,应选择积极的肿瘤完整扩大切除术。
颌骨骨性纤维瘤应与PHPT引起的棕色瘤相鉴别,前者为起源于牙周膜、含有多潜能细胞的良性肿瘤,具有破坏性、致畸形性,早期往往无症状,生长缓慢,大多数仅需观察,有症状者需手术治疗[54];后者为严重PHPT引起的非肿瘤性溶骨性骨骼病变,影像学上呈骨骼内体积不等、单发或多发的囊样透明区,边界较清楚,PHPT术后棕色瘤可自行修复,无需手术切除。
由于HPT-JT综合征的临床表型外显率不高,CDC73基因筛查有助于确定诊断,适用于PHPT合并颌骨肿瘤、肾脏肿瘤或早发子宫肿瘤者、MEN1基因阴性的遗传性PHPT、起病年龄小以及临床或病理提示恶性倾向的PHPT患者。当发现该基因突变时,应注意随访患者以及家系其他成员的甲状旁腺、颌骨、肾脏、子宫的病变情况。
FIHPTFIHPT是指遗传性PHPT中无MEN1、HPT-JT及FHH特征的临床综合征,因此仅是临床诊断。FIHPT的发病机制目前尚未完全阐述清楚,既往文献报道22%~57%是由MEN1基因突变引起,由CaSR基因或CDC73基因突变引起者较少[55-56]。但是本中心对3个中国人FIHPT家系的研究发现其致病基因均为CDC73基因[53]。目前认为它是MEN1、HPT-JT及FHH的不完全表现型或者是另外一种完全不同的临床综合征。例如当携带胚系CDC73基因突变,但临床表现仅有PHPT而无颌骨肿瘤时,那么临床诊断为FIHPT。还有很大一部分FIHPT未检测到相关的基因突变。根据FIHPT不同的遗传背景,临床表现与治疗方法不同,具体见上述各综合征部分,例如如果是由MEN1基因引起则选择SPTX,如果是由CDC73基因引起则可考虑选择局限性的甲状旁腺肿瘤切除术[57-58]。因此,在FIHPT患者中鉴定致病基因尤为重要。
总结遗传性PHPT是一种异质性疾病,除MEN1外的遗传性PHPT目前研究数据较少,治疗方式尚无定论,亟需更多研究以推进个体化治疗。致病基因检测有助于对遗传性PHPT进行准确分型,以便于选择合适的治疗及随访措施;还有助于家系成员的随访。但是目前仍有一部分病例的基因检测结果为阴性,其遗传背景有待进一步研究。
[1] | Chandrasekharappa SC, Guru SC, Manickam P, et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1[J]. Science, 1997, 276 : 404–407. DOI:10.1126/science.276.5311.404 |
[2] | Thakker RV. Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4)[J]. Mol Cell Endocrinol, 2014, 386 : 2–15. DOI:10.1016/j.mce.2013.08.002 |
[3] | Brandi ML, Gagel RF, Angeli A, et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2[J]. J Clin Endocrinol Metab, 2001, 86 : 5658–5671. DOI:10.1210/jcem.86.12.8070 |
[4] | Turner JJ, Christie PT, Pearce SH, et al. Diagnostic challenges due to phenocopies: lessons from Multiple Endocrine Neoplasia type1 (MEN1)[J]. Hum Mutat, 2010, 31. |
[5] | Horiuchi K, Okamoto T, Iihara M, et al. Analysis of genotype-phenotype correlations and survival outcomes in patients with primary hyperparathyroidism caused by multiple endocrine neoplasia type 1: the experience at a single institution[J]. Surg Today, 2013, 43 : 894–899. DOI:10.1007/s00595-012-0354-y |
[6] | Eller-Vainicher C, Chiodini I, Battista C, et al. Sporadic and MEN1-related primary hyperparathyroidism: differences in clinical expression and severity[J]. J Bone Miner Res, 2009, 24 : 1404–1410. DOI:10.1359/jbmr.090304 |
[7] | Singh ON, Sebo TJ, Thompson GB, et al. Prevalence of parathyroid carcinoma in 348 patients with multiple endocrine neoplasia type 1 - case report and review of the literature[J]. Clin Endocrinol:Oxf, 2014. |
[8] | Thakker RV, Newey PJ, Walls GV, et al. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1)[J]. J Clin Endocrinol Metab, 2012, 97 : 2990–3011. DOI:10.1210/jc.2012-1230 |
[9] | Schreinemakers JM, Pieterman CR, Scholten A, et al. The optimal surgical treatment for primary hyperparathyroidism in MEN1 patients: a systematic review[J]. World J Surg, 2011, 35 : 1993–2005. DOI:10.1007/s00268-011-1068-9 |
[10] | Falchetti A, Cilotti A, Vaggelli L, et al. A patient with MEN1-associated hyperparathyroidism,responsive to cinacalcet[J]. Nat Clin Pract Endocrinol Metab, 2008, 4 : 351–357. |
[11] | Mulligan LM, Kwok JB, Healey CS, et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A[J]. Nature, 1993, 363 : 458–460. DOI:10.1038/363458a0 |
[12] | Durbec P, Marcos-Gutierrez CV, Kilkenny C, et al. GDNF signalling through the Ret receptor tyrosine kinase[J]. Nature, 1996, 381 : 789–793. DOI:10.1038/381789a0 |
[13] | Raue F, Kraimps JL, Dralle H, et al. Primary hyperparathyroidism in multiple endocrine neoplasia type 2A[J]. J Intern Med, 1995, 238 : 369–373. DOI:10.1111/joim.1995.238.issue-4 |
[14] | Kraimps JL, Denizot A, Carnaille B, et al. Primary hyperparathyroidism in multiple endocrine neoplasia type IIa: retrospective French multicentric study. Groupe d'Etude des Tumeurs a Calcitonine (GETC,French Calcitonin Tumors Study Group),French Association of Endocrine Surgeons[J]. World J Surg, 1996, 20 : 808-812–812-813. |
[15] | Scholten A, Schreinemakers JM, Pieterman CR, et al. Evolution of surgical treatment of primary hyperparathyroidism in patients with multiple endocrine neoplasia type 2A[J]. Endocr Pract, 2011, 17 : 7–15. |
[16] | Wells SJ, Asa SL, Dralle H, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma[J]. Thyroid, 2015, 25 : 567–610. DOI:10.1089/thy.2014.0335 |
[17] | Frank-Raue K, Hoppner W, Frilling A, et al. Mutations of the ret protooncogene in German multiple endocrine neoplasia families: relation between genotype and phenotype. German Medullary Thyroid Carcinoma Study Group[J]. J Clin Endocrinol Metab, 1996, 81 : 1780–1783. |
[18] | Margraf RL, Crockett DK, Krautscheid PM, et al. Multiple endocrine neoplasia type 2 RET protooncogene database: repository of MEN2-associated RET sequence variation and reference for genotype/phenotype correlations[J]. Hum Mutat, 2009, 30 : 548–556. DOI:10.1002/humu.v30:4 |
[19] | Fritz A, Walch A, Piotrowska K, et al. Recessive transmission of a multiple endocrine neoplasia syndrome in the rat[J]. Cancer Res, 2002, 62 : 3048–3051. |
[20] | Pellegata NS, Quintanilla-Martinez L, Siggelkow H, et al. Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans[J]. Proc Natl Acad Sci U S A, 2006, 103 : 15558–15563. DOI:10.1073/pnas.0603877103 |
[21] | Wander SA, Zhao D, Slingerland JM. p27: a barometer of signaling deregulation and potential predictor of response to targeted therapies[J]. Clin Cancer Res, 2011, 17 : 12–18. DOI:10.1158/1078-0432.CCR-10-0752 |
[22] | Costa-Guda J, Marinoni I, Molatore S, et al. Somatic mutation and germline sequence abnormalities in CDKN1B,encoding p27Kip1,in sporadic parathyroid adenomas[J]. J Clin Endocrinol Metab, 2011, 96 : E701–E706. DOI:10.1210/jc.2010-1338 |
[23] | Agarwal SK, Mateo CM, Marx SJ. Rare germline mutations in cyclin-dependent kinase inhibitor genes in multiple endocrine neoplasia type 1 and related states[J]. J Clin Endocrinol Metab, 2009, 94 : 1826–1834. DOI:10.1210/jc.2008-2083 |
[24] | Georgitsi M, Raitila A, Karhu A, et al. Germline CDKN1B/p27Kip1 mutation in multiple endocrine neoplasia[J]. J Clin Endocrinol Metab, 2007, 92 : 3321–3325. DOI:10.1210/jc.2006-2843 |
[25] | Malanga D, De Gisi S, Riccardi M, et al. Functional characterization of a rare germline mutation in the gene encoding the cyclin-dependent kinase inhibitor p27Kip1 (CDKN1B) in a Spanish patient with multiple endocrine neoplasia-like phenotype[J]. Eur J Endocrinol, 2012, 166 : 551–560. DOI:10.1530/EJE-11-0929 |
[26] | Molatore S, Kiermaier E, Jung CB, et al. Characterization of a naturally-occurring p27 mutation predisposing to multiple endocrine tumors[J]. Mol Cancer, 2010, 9 : 116. DOI:10.1186/1476-4598-9-116 |
[27] | Molatore S, Marinoni I, Lee M, et al. A novel germline CDKN1B mutation causing multiple endocrine tumors: clinical,genetic and functional characterization[J]. Hum Mutat, 2010, 31 : E1825–E1835. DOI:10.1002/humu.v31:11 |
[28] | Pardi E, Mariotti S, Pellegata NS, et al. Functional characterization of a CDKN1B mutation in a Sardinian kindred with multiple endocrine neoplasia type 4 (MEN4)[J]. Endocr Connect, 2014, ii : EC-14-0116. |
[29] | Occhi G, Regazzo D, Trivellin G, et al. A novel mutation in the upstream open reading frame of the CDKN1B gene causes a MEN4 phenotype[J]. PLoS Genet, 2013, 9 : e1003350. DOI:10.1371/journal.pgen.1003350 |
[30] | Elston MS, Meyer-Rochow GY, Dray M, et al. Early onset primary hyperparathyroidism associated with a novel germline mutation in CDKN1B[J]. Case Rep Endocrinol, 2015, 2015 : 510985. |
[31] | Tonelli F, Giudici F, Giusti F, et al. A heterozygous frameshift mutation in exon 1 of CDKN1B gene in a patient affected by MEN4 syndrome[J]. Eur J Endocrinol, 2014, 171 : K7–K17. DOI:10.1530/EJE-14-0080 |
[32] | Malanga D, De Gisi S, Riccardi M, et al. Functional characterization of a rare germline mutation in the gene encoding the cyclin-dependent kinase inhibitor p27Kip1 (CDKN1B) in a Spanish patient with multiple endocrine neoplasia-like phenotype[J]. Eur J Endocrinol, 2012, 166 : 551–560. DOI:10.1530/EJE-11-0929 |
[33] | Belar O, De La Hoz C, Perez-Nanclares G, et al. Novel mutations in MEN1,CDKN1B and AIP genes in patients with multiple endocrine neoplasia type 1 syndrome in Spain[J]. Clin Endocrinol:Oxf, 2012, 76 : 719–724. DOI:10.1111/cen.2012.76.issue-5 |
[34] | Pollak MR, Brown EM, Chou YH, et al. Mutations in the human Ca(2+)-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism[J]. Cell, 1993, 75 : 1297–1303. DOI:10.1016/0092-8674(93)90617-Y |
[35] | Szczawinska D, Schnabel D, Letz S, et al. A homozygous CaSR mutation causing a FHH phenotype completely masked by vitamin D deficiency presenting as rickets[J]. J Clin Endocrinol Metab, 2014 : c20133593. |
[36] | Magno AL, Ward BK, Ratajczak T. The calcium-sensing receptor: a molecular perspective[J]. Endocr Rev, 2011, 32 : 3–30. DOI:10.1210/er.2009-0043 |
[37] | Nesbit MA, Hannan FM, Howles SA, et al. Mutations in AP2S1 cause familial hypocalciuric hypercalcemia type 3[J]. Nat Genet, 2013, 45 : 93–97. |
[38] | Nesbit MA, Hannan FM, Howles SA, et al. Mutations affecting G-protein subunit alpha11 in hypercalcemia and hypocalcemia[J]. N Engl J Med, 2013, 368 : 2476–2486. DOI:10.1056/NEJMoa1300253 |
[39] | Hannan FM, Howles SA, Rogers A, et al. Adaptor protein-2 sigma subunit mutations causing familial hypocalciuric hypercalcaemia type 3 (FHH3) demonstrate genotype-phenotype correlations,codon bias and dominant-negative effects[J]. Hum Mol Genet, 2015, 24 : 5079–5092. DOI:10.1093/hmg/ddv226 |
[40] | Eastell R, Brandi ML, Costa AG, et al. Diagnosis of asymptomatic primary hyperparathyroidism: proceedings of the Fourth International Workshop[J]. J Clin Endocrinol Metab, 2014, 99 : 3570–3579. DOI:10.1210/jc.2014-1414 |
[41] | Jayasena CN, Mahmud M, Palazzo F, et al. Utility of the urine calcium-to-creatinine ratio to diagnose primary hyperparathyroidism in asymptomatic hypercalcaemic patients with vitamin D deficiency[J]. Ann Clin Biochem, 2011, 48 : 126–129. DOI:10.1258/acb.2010.010202 |
[42] | Jakobsen NF, Rolighed L, Moser E, et al. Increased trabecular volumetric bone mass density in familial hypocalciuric hypercalcemia (FHH) type 1: a cross-sectional study[J]. Calcif Tissue Int, 2014, 95 : 141–152. DOI:10.1007/s00223-014-9877-0 |
[43] | Rasmussen AQ, Jorgensen NR, Schwarz P. Clinical and biochemical outcomes of cinacalcet treatment of familial hypocalciuric hypercalcemia: a case series[J]. J Med Case Rep, 2011, 5 : 564. DOI:10.1186/1752-1947-5-564 |
[44] | Lyons TJ, Crookes PF, Postlethwaite W, et al. Familial hypocalciuric hypercalcaemia as a differential diagnosis of hyperparathyroidism: studies in a large kindred and a review of surgical experience in the condition[J]. Br J Surg, 1986, 73 : 188–192. DOI:10.1002/(ISSN)1365-2168 |
[45] | Blair JW, Carachi R. Neonatal primary hyperparathyroidism—a case report and review of the literature[J]. Eur J Pediatr Surg, 1991, 1 : 110–114. DOI:10.1055/s-2008-1042470 |
[46] | Gannon AW, Monk HM, Levine MA. Cinacalcet monotherapy in neonatal severe hyperparathyroidism: a case study and review[J]. J Clin Endocrinol Metab, 2014, 99 : 7–11. DOI:10.1210/jc.2013-2834 |
[47] | Carling T, Szabo E, Bai M, et al. Familial hypercalcemia and hypercalciuria caused by a novel mutation in the cytoplasmic tail of the calcium receptor[J]. J Clin Endocrinol Metab, 2000, 85 : 2042–2047. |
[48] | Carpten JD, Robbins CM, Villablanca A, et al. HRPT2,encoding parafibromin,is mutated in hyperparathyroidism-jaw tumor syndrome[J]. Nat Genet, 2002, 32 : 676–680. DOI:10.1038/ng1048 |
[49] | Juhlin CC, Villablanca A, Sandelin K, et al. Parafibromin immunoreactivity: its use as an additional diagnostic marker for parathyroid tumor classification[J]. Endocr Relat Cancer, 2007, 14 : 501–512. DOI:10.1677/ERC-07-0021 |
[50] | Wang O, Wang C, Nie M, et al. Novel HRPT2/CDC73 gene mutations and loss of expression of parafibromin in Chinese patients with clinically sporadic parathyroid carcinomas[J]. PLoS One, 2012, 7 : e45567. DOI:10.1371/journal.pone.0045567 |
[51] | Iacobone M, Carnaille B, Palazzo FF, et al. Hereditary hyperparathyroidism-a consensus report of the European Society of Endocrine Surgeons (ESES)[J]. Langenbecks Arch Surg, 2015, 400 : 867–886. DOI:10.1007/s00423-015-1342-7 |
[52] | Iacobone M, Barzon L, Porzionato A, et al. Parafibromin expression,single-gland involvement,and limited parathyroidectomy in familial isolated hyperparathyroidism[J]. Surgery, 2007, 142 : 984–991. DOI:10.1016/j.surg.2007.09.029 |
[53] | Kong J, Wang O, Nie M, et al. Familial isolated primary hyperparathyroidism/hyperparathyroidism-jaw tumour syndrome caused by germline gross deletion or point mutations of CDC73 gene in Chinese[J]. Clin Endocrinol:Oxf, 2014, 81 : 222–230. DOI:10.1111/cen.2014.81.issue-2 |
[54] | Gondivkar SM, Gadbail AR, Chole R, et al. Ossifying fibroma of the jaws: report of two cases and literature review[J]. Oral Oncol, 2011, 47 : 804–809. DOI:10.1016/j.oraloncology.2011.06.014 |
[55] | Cetani F, Pardi E, Ambrogini E, et al. Genetic analyses in familial isolated hyperparathyroidism: implication for clinical assessment and surgical management[J]. Clin Endocrinol:Oxf, 2006, 64 : 146–152. DOI:10.1111/cen.2006.64.issue-2 |
[56] | Pannett AA, Kennedy AM, Turner JJ, et al. Multiple endocrine neoplasia type 1 (MEN1) germline mutations in familial isolated primary hyperparathyroidism[J]. Clin Endocrinol:Oxf, 2003, 58 : 639–646. DOI:10.1046/j.1365-2265.2003.01765.x |
[57] | Stalberg P, Carling T. Familial parathyroid tumors: diagnosis and management[J]. World J Surg, 2009, 33 : 2234–2243. DOI:10.1007/s00268-009-9924-6 |
[58] | Carling T, Udelsman R. Parathyroid surgery in familial hyperparathyroid disorders[J]. J Intern Med, 2005, 257 : 27–37. DOI:10.1111/jim.2005.257.issue-1 |
(收稿日期:2015-12-31) |