骨质疏松症是以骨强度下降、骨折危险性增加为主要特点的全身性骨病。骨质疏松性骨折及其引发的多重并发症,严重影响人群寿命及生活质量,因此,有效防治骨质疏松症十分重要。目前,骨质疏松症的药物治疗主要包括钙剂、维生素D制剂,联合强有效的骨吸收抑制剂或骨形成促进剂,包括雌激素、选择性雌激素受体调节剂、双膦酸盐、特立帕肽等[1]。由于骨质疏松症需要进行长期治疗,新型抗骨质疏松药物亟待研发。
骨转换失衡是骨质疏松症重要的病理生理机制,随着年龄老化,内分泌等多系统改变引起骨吸收大于骨形成,骨量逐渐下降、骨微结构损害、骨折风险增加。骨转换主要由成骨细胞、骨细胞及破骨细胞共同完成,OPG/RANKL/RANK通路、Wnt/β连环蛋白通路、mTOR/自噬信号通路等在调节上述细胞数量及活性中发挥重要作用[2-3]。近年来,针对上述信号通路设计的单克隆抗体等靶向治疗药物,已经成为骨质疏松症治疗领域的研究热点。本文综述骨质疏松症治疗领域靶向药物的研究进展。
靶向治疗的概念靶向治疗最早是在细胞分子水平,针对明确致癌位点(肿瘤细胞的蛋白质分子或基因片段)设计治疗药物,其能特异选择并结合致癌位点,使肿瘤细胞特异性死亡[4]。近年来,随着分子生物学的发展和对疾病认识的深入,分子靶向治疗药物已进入全新时代。根据作用靶点和性质,靶向药物主要包括:针对特定细胞标志物的单克隆抗体、酪氨酸激酶受体抑制剂、抗肿瘤血管生成的药物、mTOR激酶抑制剂等[4-6]。
在骨质疏松领域,靶向药物主要是针对骨转换调控通路中的关键分子,设计针对成骨细胞或破骨细胞的特异单克隆抗体,通过抑制骨吸收或促进骨形成,增加骨密度(bone mineral density, BMD)和骨强度,降低骨折风险。下面就调节骨代谢的重要信号通路及相应的靶向药物进行介绍。
OPG/RANKL/RANK通路OPG/RANKL/RANK通路是调节破骨细胞分化与活性最重要的信号通路。人类细胞核因子κB受体活化因子配基(receptor activator of nuclear factor-κβ ligand,RANKL)属于肿瘤坏死因子家族,主要在成骨细胞表达。RANKL的受体为RANK,在破骨细胞和破骨细胞前体细胞表达。RANKL和RANK结合后,可刺激破骨细胞分化,促进骨吸收。护骨素(osteoprotegerin,OPG)是由成骨细胞分泌的可溶性受体,可与RANK竞争性结合RANKL,抑制骨吸收[7]。
狄诺塞麦(denosumab),是人源性IgG2单克隆抗体,能够特异性结合RANKL,阻止RANKL和RANK结合,降低破骨细胞活性。FREEDOM研究纳入7 868例60~90岁绝经后骨质疏松患者,随机给予每半年狄诺塞麦60 mg或安慰剂皮下注射,治疗3年,狄诺塞麦治疗组椎体、髋部、非椎体新发骨折分别减少68%、40%、20%,对441例患者进行BMD测量,狄诺塞麦组腰椎和全髋BMD分别增加9.2%和6.0%,显著高于安慰剂组[8]。采用定量CT对99例受试者进行有限元分析,狄诺塞麦治疗组松质骨和皮质骨骨强度显著增加[9]。FREEDOM延伸研究,观察狄诺塞麦治疗10年,BMD仍持续增长、骨转换指标降低、骨折风险下降[10]。因此,狄诺塞麦是强有效的骨吸收抑制剂,能显著增加腰椎及髋部BMD和骨强度,降低骨折率,长期使用安全性良好。
有研究比较狄诺塞麦与其他抗骨质疏松药物的治疗效果,及与其他药物联合治疗的效果。DECIDE研究纳入1 189例绝经后骨质疏松女性,随机予狄诺塞麦每半年60 mg皮下注射或阿仑膦酸钠70 mg/周口服,治疗12个月,狄诺塞麦治疗组骨吸收指标下降更明显,腰椎、股骨颈、全髋、桡骨远端1/3 BMD增加优于阿仑膦酸钠治疗组[11]。狄诺塞麦作为抗体,可到达皮质骨和松质骨,因此,对皮质骨和松质骨BMD增加均有明显效果。STAND研究对接受阿仑膦酸钠6个月及以上的绝经后骨质疏松患者,继续予狄诺塞麦或阿仑膦酸钠治疗,狄诺塞麦治疗组增加BMD优于阿仑膦酸钠治疗组[12],其可能机制是双膦酸盐抑制破骨细胞后,可反馈性使RANKL数量增多,使用狄诺塞麦可阻止RANKL和RANK结合,进一步抑制破骨细胞分化、激活和存活[13]。对于特立帕肽治疗患者,序贯予双膦酸盐或狄诺塞麦治疗,狄诺塞麦组BMD增加较双膦酸盐组更显著[14]。DATA研究纳入94例绝经后骨质疏松女性,随机予特立帕肽20 μg/d、狄诺塞麦每半年60 mg或二者联合治疗2年,特立帕肽和狄诺塞麦组腰椎、股骨颈、全髋BMD均明显增加,且联合组上述部位BMD增加优于单药治疗[15-16]。综上,狄诺塞麦是有效的骨质疏松治疗药物,在未使用抗骨质疏松症药物治疗的患者,或者使用过双膦酸盐、特立帕肽的患者中序贯治疗,狄诺塞麦组效果均优于双膦酸盐组。狄诺塞麦和促骨形成药物特立帕肽联合治疗,效果优于单药治疗。
但是,狄诺塞麦对骨转换和BMD的作用是可逆的,停药后作用会明显减弱[17]。256例接受狄诺塞麦或安慰剂治疗2年的绝经后骨质疏松患者,停药后短期骨转换指标即上升,回复基线水平,停药18~24个月后BMD也逐渐下降至治疗前水平[18],提示狄诺塞麦停药后,需要序贯给予其他抗骨质疏松症药物治疗。
Wnt/β连环蛋白通路Wnt/β连环蛋白(β-catenin)通路是调节成骨细胞增生、分化与活性的关键通路,在骨骼发育和骨量维持中发挥重要作用[19]。在经典的Wnt/β连环蛋白通路中,Wnt蛋白可与卷曲蛋白家族受体和低密度脂蛋白受体相关蛋白5和6(lipoprotein receptor-related protein 5 and 6, LRP5/6)结合,引起LRP5/6受体细胞内段磷酸化,使轴蛋白(Axin)与受体复合物结合,促进成骨细胞增生和活化,诱导骨形成[20]。
骨硬化素单抗与Wnt通路骨硬化素是骨细胞分泌的含213个氨基酸的糖蛋白,能够与LRP5/6细胞外区域结合,拮抗Wnt通路,抑制骨形成[2];骨硬化素也可竞争性结合骨形态发生蛋白跨膜丝氨酸-苏氨酸激酶受体,抑制骨形态发生蛋白通路,减少骨形成[18];骨硬化素还增加成骨细胞表达RANKL,促进骨吸收[20]。骨硬化素编码基因SOST失活性纯合突变可致骨硬化症,杂合突变可致BMD明显增高[21],提示骨硬化素单抗可作为骨质疏松症的治疗靶点。
Romosozumab是人源性免疫球蛋白IgG2,可结合并阻断骨硬化素作用,促进骨形成、降低骨吸收,从而增加BMD、降低骨折风险。419例55~85岁绝经后骨质疏松患者随机接受Romosozumab每月皮下注射70、140、210 mg或每3个月注射140、210 mg,阿仑膦酸钠70 mg/周口服,特立帕肽20 μg/d皮下注射,每月或每3个月安慰剂皮下注射,治疗12个月,Romosozumab组BMD明显增加,且呈剂量依赖性,其中腰椎BMD在每月210 mg Romosozumab组增加11.3%,阿仑膦酸钠组增加4.1%,特立帕肽增加7.1%[22]。后续进行QCT检测,Romosozumab组和特立帕肽组椎体骨小梁体积BMD均明显增加;Romosozumab组椎体皮质骨及髋部松质骨的体积BMD增加均高于特立帕肽组[23]。Ⅲ期临床试验纳入7 180例55~90岁绝经后骨质疏松女性,随机给予Romosozumab每月210 mg或安慰剂皮下注射治疗12个月,此后两组均接受狄诺塞麦治疗12个月,Romosozumab组新发椎体骨折、临床骨折均显著低于安慰剂组,对128例受试者进行BMD测量,治疗24个月,Romosozumab/狄诺塞麦组腰椎、股骨颈、全髋BMD增加显著高于安慰剂/狄诺塞麦组[24]。
Blosozumab是另一种骨硬化素的人源性免疫球蛋白IgG4,也有结合并阻断骨硬化素的作用。有研究纳入120例绝经后骨质疏松患者,随机予Blosozumab每月180 mg、每2周180 mg、每2周270 mg治疗1年,发现BMD呈剂量依赖性增加,每2周270 mg组腰椎、全髋、股骨颈BMD较基线分别增加17.7%、6.7%、6.3%[25]。Blosozumab停药后1年,腰椎和全髋BMD均逐渐下降[26],提示骨硬化素单抗作用是可逆的,需与其他抗骨质疏松药物进行序贯治疗。
DKK1单抗与Wnt通路DKK1主要由成骨细胞和成熟骨细胞表达,可与LRP5或LRP6的羧基端跨膜通道受体蛋白Kremen 1或Kremen 2结合,引起LRP5/LRP6从细胞表面内化和降解,β-catenin稳定性降低,抑制骨形成[18]。在DKK1过表达小鼠中观察到骨量下降、骨形成减慢;而DKK1缺失可致骨量增加[27]。骨质疏松患者DKK1水平与BMD呈负相关[28]。在去卵巢骨质疏松小鼠模型,予DKK1单抗治疗,发现膜内骨形成增加,股骨颈和腰椎BMD增加[29]。非人灵长类动物接受DKK1单抗治疗9个月后BMD增加[30]。DKK1单抗治疗老年雌鼠22周,BMD增加、骨微结构改善[31]。因此,DKK1单抗有望成为促进骨形成的新型骨质疏松症治疗药物。由于DKK1并非骨特异性表达,目前DKK1抗体在人类主要用于治疗骨髓瘤[32],其治疗骨质疏松症的临床研究,有待深入开展。
Wnt通路的其他靶点LRP5失活性突变可致常染色体隐性遗传的骨质疏松-假神经胶质瘤综合征,该病骨脆性增加,成骨细胞活性下降[33]。LRP5激活性突变可致常染色显性遗传性高骨量[34]。LRP5可能是潜在的骨质疏松治疗靶点,但由于LRP5在多个组织表达,特异性激活骨组织的LRP5存在难度。此外,LRP4、SFRP4、WNT16和NOTUM也具有调控Wnt通路的潜力,有望成为骨质疏松症治疗研究的新靶点[35]。
mTOR/自噬信号通路自噬是在机体生存、发展和平衡中发挥极其重要作用、高度保守的生理过程,它可去除功能异常的细胞器和错误折叠的蛋白质,维持细胞内平衡。在应激时,自噬可吞噬不重要的细胞成分来提供能量和营养。mTOR(mammalian target of rapamycin)是进化保守的丝氨酸/苏氨酸激酶,可感受营养、生长因子和能量代谢状态,其相关通路是调节自噬的重要信号通路[36]。研究表明,自噬基因缺陷小鼠的皮质骨体积和皮质骨厚度均下降,皮质骨孔隙增加[37]。老年人存在年龄相关的骨量丢失,骨细胞自噬活性下降是其重要原因之一[3, 38]。
雷帕霉素是mTOR抑制剂,可激活细胞自噬。破骨细胞缺乏mTOR调节相关蛋白时,细胞分化异常,骨量增加,用雷帕霉素抑制mTOR通路,也可抑制破骨细胞分化[38]。52只老年雄性大鼠随机接受雷帕霉素(1 mg/kg·d)或安慰剂腹腔注射12周,雷帕霉素组骨细胞自噬激活,骨细胞凋亡减少,破骨细胞数量减少,骨矿化速率加快,且雷帕霉素组腰4椎体和胫骨近端BMD、骨小梁厚度和数目均明显高于安慰剂组[39]。724例患乳腺癌的绝经后女性,按2:1随机接受芳香化酶抑制剂(依西美坦,25 mg/d)治疗或芳香化酶抑制剂与雷帕霉素(依维莫司,10 mg/d)联合治疗,在治疗6个月和12个月后,依西美坦组骨转换指标升高,联合治疗组骨转换指标下降,骨量减少低于依西美坦组[40],提示mTOR抑制剂能够抑制骨转换、增加骨量,有望成为骨质疏松症的治疗新药。
可见,随着骨质疏松症分子机制的研究深入,针对成骨细胞和破骨细胞调控通路的治疗靶点被陆续发现。新型靶向治疗药物有望通过促进骨形成或抑制骨吸收,来增加BMD、降低骨折率。然而,如何筛选骨组织特异性高的靶向治疗药物,以提高疗效与安全性,是未来需要深入研究的问题。
[1] | Rachner TD, Khosla S, Hofbauer LC. Osteoporosis:now and the future[J]. Lancet, 2011, 377: 1276–1287. DOI:10.1016/S0140-6736(10)62349-5 |
[2] | Lewiecki EM. New targets for intervention in the treatment of postmenopausal osteoporosis[J]. Nat Rev Rheumatol, 2011, 7: 631–638. DOI:10.1038/nrrheum.2011.130 |
[3] | Chen K, Yang YH, Jiang SD, et al. Decreased activity of osteocyte autophagy with aging may contribute to the bone loss in senile population[J]. Histochem Cell Biol, 2014, 142: 285–295. DOI:10.1007/s00418-014-1194-1 |
[4] | Morère JF. ASCO 2013:from the rediscovery of old recipes to targeted oncology[J]. Target Oncol, 2013, 8: 157–158. DOI:10.1007/s11523-013-0292-7 |
[5] | Khozin S, Weinstock C, Blumenthal GM, et al. Osimertinib for the treatment of metastatic epidermal growth factor T970M positive non-small cell lung cancer[J]. Ther Adv Respir Dis, 2016, 10: 549–565. DOI:10.1177/1753465816670498 |
[6] | Ma W, Xu M, Liu Y, et al. Safety profile of combined therapy inhibiting EFGR and VEGF pathways in patients with advanced non-small-cell lung cancer:A meta-analysis of 15 phase Ⅱ/Ⅲ randomized trials[J]. Int J Cancer, 2015, 137: 409–419. DOI:10.1002/ijc.v137.2 |
[7] | Lacey DL, Boyle WJ, Simonet WS, et al. Bench to bedside:elucidation of the OPG-RANK-RANKL pathway and the development of denosumab[J]. Nat Rev Drug Discov, 2012, 11: 401–419. DOI:10.1038/nrd3705 |
[8] | Cummings SR, San Martin J, McClung MR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis[J]. New Engl J Med, 2009, 361: 756–765. DOI:10.1056/NEJMoa0809493 |
[9] | Keaveny TM, McClung MR, Genant HK, et al. Femoral and vertebral strength improvements in postmenopausal women with osteoporosis treated with denosumab[J]. J Bone Miner Res, 2014, 29: 158–165. DOI:10.1002/jbmr.2024 |
[10] | Bone HG, Wagman RB, Brandi ML, et al. 10 years of denosumab treatment in postmenopausal women with osteoporosis:results from the phase 3 randomised FREEDOM trial and open-label extension[J]. Lancet Diabetes Endocrinol, 2017, 5: 513–523. DOI:10.1016/S2213-8587(17)30138-9 |
[11] | Brown JP, Prince RL, Deal C, et al. Comparison of the effect of denosumab and alendronate on BMD and biochemical markers of bone turnover in postmen-opausal women with low bone mass:a randomized, blinded, phase 3 trial[J]. J Bone Miner Res, 2009, 24: 153–161. DOI:10.1359/jbmr.2009.24.issue-1 |
[12] | Kendler DL, Roux C, Benhamou CL, et al. Effects of denosumab on bone mineral density and bone turnover in postmenopausal women transitioning from alend-ronate therapy[J]. J Bone Miner Res, 2010, 25: 72–81. DOI:10.1359/jbmr.090716 |
[13] | Baron R, Ferrari S, Russell RG. Denosumab and bisphosphonates:Different mechanisms of action and effects[J]. Bone, 2011, 48: 677–692. DOI:10.1016/j.bone.2010.11.020 |
[14] | Ebina K, Hashimoto J, Kashii M, et al. The effects of switching daily teriparatide to oral bisphosphonates or denosumab in patients with primary osteoporosis[J]. J Bone Miner Metab, 2017, 35: 91–98. DOI:10.1007/s00774-015-0731-x |
[15] | Tsai JN, Uihlein AV, Lee H, et al. Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis:the DATA study randomised trial[J]. Lancet, 2013, 382: 50–56. DOI:10.1016/S0140-6736(13)60856-9 |
[16] | Leder BZ, Tsai JN, Uihlein AV, et al. Two years of Denosumab and teriparatide administration in postmenopausal women with osteoporosis (The DATA Extension Study):a randomized controlled trial[J]. J Clin Endocrinol Metab, 2014, 99: 1694–1700. DOI:10.1210/jc.2013-4440 |
[17] | Bone HG, Bolognese MA, Yuen CK, et al. Effects of denosumab treatment and discontinuation on bone mineral density and bone turnover markers in postmenopausal women with low bone mass[J]. J Clin Endocrinol Metab, 2011, 96: 972–980. DOI:10.1210/jc.2010-1502 |
[18] | Rossini M, Gatti D, Adami S. Involvement of WNT/β-catenin signaling in the treatment of osteoporosis[J]. Calcif Tissue Int, 2013, 93: 121–132. DOI:10.1007/s00223-013-9749-z |
[19] | Rauner M, Rachner TD, Hofbauer LC. Bone formation and the Wnt signaling pathway[J]. New Engl J Med, 2016, 375: 1902. DOI:10.1056/NEJMc1609768 |
[20] | MacNabb C, Patton D, Hayes JS. Sclerostin antibody therapy for the treatment of osteoporosis:clinical prospects and challenges[J]. J Osteoporos, 2016, 2016: 6217286. |
[21] | Bhadada SK, Rastogi A, Steenackers E, et al. Novel SOST gene mutation in a sclerosteosis patient and her parents[J]. Bone, 2013, 52: 707–710. DOI:10.1016/j.bone.2012.10.009 |
[22] | McClung MR, Grauer A, Boonen S, et al. Romosozumab in postmenopausal women with low bone mineral density[J]. New Engl J Med, 2014, 370: 412–420. DOI:10.1056/NEJMoa1305224 |
[23] | Genant HK, Engelke K, Bolognese MA, et al. Effects of Romosozumab compared with teriparatide on bone density and mass at the spine and hip in postmeno-pausal women with low bone mass[J]. J Bone Miner Res, 2017, 32: 181–187. DOI:10.1002/jbmr.2932 |
[24] | Cosman F, Crittenden DB, Adachi JD, et al. Romosozumab treatment in postmenopausal women with osteoporosis[J]. New Engl J Med, 2016, 375: 1532–1543. DOI:10.1056/NEJMoa1607948 |
[25] | Recker RR, Benson CT, Matsumoto T, et al. A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density[J]. J Bone Miner Res, 2015, 30: 216–224. DOI:10.1002/jbmr.2351 |
[26] | Recknor CP, Recker RR, Benson CT, et al. The effect of discontinuing treatment with blosozumab:follow-up results of a phase 2 randomized clinical trial in postmenopausal women with low bone mineral density[J]. J Bone Miner Res, 2015, 30: 1717–1725. DOI:10.1002/jbmr.2489 |
[27] | Glantschnig H, Hampton RA, Lu P, et al. Generation and selection of novel fully human monoclonal anti-bodies that neutralize Dickkopf-1(DKK1) inhibitory function in vitro and increase bone mass in vivo[J]. J Biol Chem, 2010, 285: 40135–40147. DOI:10.1074/jbc.M110.166892 |
[28] | Ho-Pham LT, Nguyen SC, Tran B, et al. Cont-ributions of Caucasian-associated bone mass loci to the variation in bone mineral density in vietnamese population[J]. Bone, 2015, 76: 18–22. DOI:10.1016/j.bone.2015.03.003 |
[29] | Glantschnig H, Scott K, Hampton R, et al. A rate-limiting role for Dickkopf-1 in bone formation and the remediation of bone loss in mouse and primate models of postmenopausal osteoporosis by an experimental therapeutic antibody[J]. J Pharmacol Exp Ther, 2011, 338: 568–578. DOI:10.1124/jpet.111.181404 |
[30] | Glantschnig H, Hampton RA, Lu P, et al. Generation and selection of novel fully human monoclonal antibodies that neutralize Dickkopf-1(DKK1) inhibi-tory function in vitro and increase bone mass in vivo[J]. J Biol Chem, 2010, 285: 40135–40147. DOI:10.1074/jbc.M110.166892 |
[31] | Wu Q, Li RS, Zhao Y, et al. Vaccination with DKK1-derived peptides promotes bone formation and bone mass in an aged mouse osteoporosis model[J]. Calcif Tissue Int, 2014, 95: 153–165. DOI:10.1007/s00223-014-9875-2 |
[32] | Iyer SP, Beck JT, Stewart AK, et al. A Phase IB multicentre dose-determination study of BHQ880 in combination with anti-myeloma therapy and zoledronic acid in patients with relapsed or refractory multiple myeloma and prior skeletal-related events[J]. Br J Haematol, 2014, 167: 366–375. DOI:10.1111/bjh.2014.167.issue-3 |
[33] | Alonso N, Soares DC, V McCloskey E, et al. Atypical femoral fracture in osteoporosis pseudoglioma syndrome associated with two novel compound heterozygous mutations in LRP5[J]. J Bone Miner Res, 2015, 30: 615–620. DOI:10.1002/jbmr.2403 |
[34] | Niziolek PJ, Farmer TL, Cui Y, et al. High-bone-mass-producing mutations in the Wnt signaling pathway result in distinct skeletal phenotypes[J]. Bone, 2011, 49: 1010–1019. DOI:10.1016/j.bone.2011.07.034 |
[35] | Brommage R. Genetic approaches to identifying novel osteoporosis drug targets[J]. J Cell Biochem, 2015, 116: 2139–2145. DOI:10.1002/jcb.v116.10 |
[36] | Pierrefite-Carle V, Santucci-Darmanin S, Breuil V, et al. Autophagy in bone:self-eating to stay in balance[J]. Ageing Res Rev, 2015, 24: 206–217. DOI:10.1016/j.arr.2015.08.004 |
[37] | Onal M, Piemontese M, Xiong J, et al. Suppression of autophagy in osteocytes mimics skeletal aging[J]. J Biol Chem, 2013, 288: 17432–17440. DOI:10.1074/jbc.M112.444190 |
[38] | Dai Q, Xie F, Han Y, et al. Inactivation of Raptor/mTORC1 signaling in osteoclasts increases bone mass by inhibiting osteoclast differentiation in mice[J]. J Biol Chem, 2017, 292: 196–204. DOI:10.1074/jbc.M116.764761 |
[39] | Luo D, Ren H, Li T, et al. Rapamycin reduces severity of senile osteoporosis by activating osteocyte autophagy[J]. Osteoporos Int, 2016, 27: 1093–1101. DOI:10.1007/s00198-015-3325-5 |
[40] | Gnant M, Baselga J, Rugo HS, et al. Effect of everolimus on bone marker levels and progressive disease in bone in BOLERO-2[J]. J Natl Cancer Inst, 2013, 105: 654–663. DOI:10.1093/jnci/djt026 |
(收稿日期:2017-01-07) |