骨质疏松症靶向治疗药物
吕芳, 李梅     
100730 北京,中国医学科学院 北京协和医学院 北京协和医院内分泌科 国家卫生和计划生育委员会内分泌重点实验室
摘要:骨质疏松症是以骨强度下降、骨折危险性增加为特点的疾病。骨转换失衡是骨质疏松症的主要病理生理机制。OPG/RANKL/RANK通路、Wnt/β连环蛋白通路、mTOR/自噬信号通路在调节骨转换中发挥重要作用。本文综述通过靶向抑制上述通路相关因子,发挥增加骨密度(bone mineral density,BMD)、改善骨微结构、降低骨折风险作用的治疗新药在骨质疏松症治疗中的研究进展。
关键词靶向治疗药物     骨转换失衡     骨质疏松症    
New targeted agents for the treatment of osteoporosis
LYU Fang, LI Mei     
Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Beijing 100730, China
Abstract: Osteoporosis is characterized by decreased bone strength and increased risk of bone fractures. Bone remodeling imbalance is a major pathophysiological mechanism of osteoporosis. Pathways of OPG/RANKL/RANK, Wnt/β-catenin, and autophagy/mTOR play important roles in modulation of bone remodeling. We review the progress of new agents in treatment of osteoporosis, which can increase bone mineral density, improve bone microstructure and reduce the risk of fractures through targeting at these pathways.
Key words: targeted therapy     bone remodeling imbalance     osteoporosis    

骨质疏松症是以骨强度下降、骨折危险性增加为主要特点的全身性骨病。骨质疏松性骨折及其引发的多重并发症,严重影响人群寿命及生活质量,因此,有效防治骨质疏松症十分重要。目前,骨质疏松症的药物治疗主要包括钙剂、维生素D制剂,联合强有效的骨吸收抑制剂或骨形成促进剂,包括雌激素、选择性雌激素受体调节剂、双膦酸盐、特立帕肽等[1]。由于骨质疏松症需要进行长期治疗,新型抗骨质疏松药物亟待研发。

骨转换失衡是骨质疏松症重要的病理生理机制,随着年龄老化,内分泌等多系统改变引起骨吸收大于骨形成,骨量逐渐下降、骨微结构损害、骨折风险增加。骨转换主要由成骨细胞、骨细胞及破骨细胞共同完成,OPG/RANKL/RANK通路、Wnt/β连环蛋白通路、mTOR/自噬信号通路等在调节上述细胞数量及活性中发挥重要作用[2-3]。近年来,针对上述信号通路设计的单克隆抗体等靶向治疗药物,已经成为骨质疏松症治疗领域的研究热点。本文综述骨质疏松症治疗领域靶向药物的研究进展。

靶向治疗的概念

靶向治疗最早是在细胞分子水平,针对明确致癌位点(肿瘤细胞的蛋白质分子或基因片段)设计治疗药物,其能特异选择并结合致癌位点,使肿瘤细胞特异性死亡[4]。近年来,随着分子生物学的发展和对疾病认识的深入,分子靶向治疗药物已进入全新时代。根据作用靶点和性质,靶向药物主要包括:针对特定细胞标志物的单克隆抗体、酪氨酸激酶受体抑制剂、抗肿瘤血管生成的药物、mTOR激酶抑制剂等[4-6]

在骨质疏松领域,靶向药物主要是针对骨转换调控通路中的关键分子,设计针对成骨细胞或破骨细胞的特异单克隆抗体,通过抑制骨吸收或促进骨形成,增加骨密度(bone mineral density, BMD)和骨强度,降低骨折风险。下面就调节骨代谢的重要信号通路及相应的靶向药物进行介绍。

OPG/RANKL/RANK通路

OPG/RANKL/RANK通路是调节破骨细胞分化与活性最重要的信号通路。人类细胞核因子κB受体活化因子配基(receptor activator of nuclear factor-κβ ligand,RANKL)属于肿瘤坏死因子家族,主要在成骨细胞表达。RANKL的受体为RANK,在破骨细胞和破骨细胞前体细胞表达。RANKL和RANK结合后,可刺激破骨细胞分化,促进骨吸收。护骨素(osteoprotegerin,OPG)是由成骨细胞分泌的可溶性受体,可与RANK竞争性结合RANKL,抑制骨吸收[7]

狄诺塞麦(denosumab),是人源性IgG2单克隆抗体,能够特异性结合RANKL,阻止RANKL和RANK结合,降低破骨细胞活性。FREEDOM研究纳入7 868例60~90岁绝经后骨质疏松患者,随机给予每半年狄诺塞麦60 mg或安慰剂皮下注射,治疗3年,狄诺塞麦治疗组椎体、髋部、非椎体新发骨折分别减少68%、40%、20%,对441例患者进行BMD测量,狄诺塞麦组腰椎和全髋BMD分别增加9.2%和6.0%,显著高于安慰剂组[8]。采用定量CT对99例受试者进行有限元分析,狄诺塞麦治疗组松质骨和皮质骨骨强度显著增加[9]。FREEDOM延伸研究,观察狄诺塞麦治疗10年,BMD仍持续增长、骨转换指标降低、骨折风险下降[10]。因此,狄诺塞麦是强有效的骨吸收抑制剂,能显著增加腰椎及髋部BMD和骨强度,降低骨折率,长期使用安全性良好。

有研究比较狄诺塞麦与其他抗骨质疏松药物的治疗效果,及与其他药物联合治疗的效果。DECIDE研究纳入1 189例绝经后骨质疏松女性,随机予狄诺塞麦每半年60 mg皮下注射或阿仑膦酸钠70 mg/周口服,治疗12个月,狄诺塞麦治疗组骨吸收指标下降更明显,腰椎、股骨颈、全髋、桡骨远端1/3 BMD增加优于阿仑膦酸钠治疗组[11]。狄诺塞麦作为抗体,可到达皮质骨和松质骨,因此,对皮质骨和松质骨BMD增加均有明显效果。STAND研究对接受阿仑膦酸钠6个月及以上的绝经后骨质疏松患者,继续予狄诺塞麦或阿仑膦酸钠治疗,狄诺塞麦治疗组增加BMD优于阿仑膦酸钠治疗组[12],其可能机制是双膦酸盐抑制破骨细胞后,可反馈性使RANKL数量增多,使用狄诺塞麦可阻止RANKL和RANK结合,进一步抑制破骨细胞分化、激活和存活[13]。对于特立帕肽治疗患者,序贯予双膦酸盐或狄诺塞麦治疗,狄诺塞麦组BMD增加较双膦酸盐组更显著[14]。DATA研究纳入94例绝经后骨质疏松女性,随机予特立帕肽20 μg/d、狄诺塞麦每半年60 mg或二者联合治疗2年,特立帕肽和狄诺塞麦组腰椎、股骨颈、全髋BMD均明显增加,且联合组上述部位BMD增加优于单药治疗[15-16]。综上,狄诺塞麦是有效的骨质疏松治疗药物,在未使用抗骨质疏松症药物治疗的患者,或者使用过双膦酸盐、特立帕肽的患者中序贯治疗,狄诺塞麦组效果均优于双膦酸盐组。狄诺塞麦和促骨形成药物特立帕肽联合治疗,效果优于单药治疗。

但是,狄诺塞麦对骨转换和BMD的作用是可逆的,停药后作用会明显减弱[17]。256例接受狄诺塞麦或安慰剂治疗2年的绝经后骨质疏松患者,停药后短期骨转换指标即上升,回复基线水平,停药18~24个月后BMD也逐渐下降至治疗前水平[18],提示狄诺塞麦停药后,需要序贯给予其他抗骨质疏松症药物治疗。

Wnt/β连环蛋白通路

Wnt/β连环蛋白(β-catenin)通路是调节成骨细胞增生、分化与活性的关键通路,在骨骼发育和骨量维持中发挥重要作用[19]。在经典的Wnt/β连环蛋白通路中,Wnt蛋白可与卷曲蛋白家族受体和低密度脂蛋白受体相关蛋白5和6(lipoprotein receptor-related protein 5 and 6, LRP5/6)结合,引起LRP5/6受体细胞内段磷酸化,使轴蛋白(Axin)与受体复合物结合,促进成骨细胞增生和活化,诱导骨形成[20]

骨硬化素单抗与Wnt通路

骨硬化素是骨细胞分泌的含213个氨基酸的糖蛋白,能够与LRP5/6细胞外区域结合,拮抗Wnt通路,抑制骨形成[2];骨硬化素也可竞争性结合骨形态发生蛋白跨膜丝氨酸-苏氨酸激酶受体,抑制骨形态发生蛋白通路,减少骨形成[18];骨硬化素还增加成骨细胞表达RANKL,促进骨吸收[20]。骨硬化素编码基因SOST失活性纯合突变可致骨硬化症,杂合突变可致BMD明显增高[21],提示骨硬化素单抗可作为骨质疏松症的治疗靶点。

Romosozumab是人源性免疫球蛋白IgG2,可结合并阻断骨硬化素作用,促进骨形成、降低骨吸收,从而增加BMD、降低骨折风险。419例55~85岁绝经后骨质疏松患者随机接受Romosozumab每月皮下注射70、140、210 mg或每3个月注射140、210 mg,阿仑膦酸钠70 mg/周口服,特立帕肽20 μg/d皮下注射,每月或每3个月安慰剂皮下注射,治疗12个月,Romosozumab组BMD明显增加,且呈剂量依赖性,其中腰椎BMD在每月210 mg Romosozumab组增加11.3%,阿仑膦酸钠组增加4.1%,特立帕肽增加7.1%[22]。后续进行QCT检测,Romosozumab组和特立帕肽组椎体骨小梁体积BMD均明显增加;Romosozumab组椎体皮质骨及髋部松质骨的体积BMD增加均高于特立帕肽组[23]。Ⅲ期临床试验纳入7 180例55~90岁绝经后骨质疏松女性,随机给予Romosozumab每月210 mg或安慰剂皮下注射治疗12个月,此后两组均接受狄诺塞麦治疗12个月,Romosozumab组新发椎体骨折、临床骨折均显著低于安慰剂组,对128例受试者进行BMD测量,治疗24个月,Romosozumab/狄诺塞麦组腰椎、股骨颈、全髋BMD增加显著高于安慰剂/狄诺塞麦组[24]

Blosozumab是另一种骨硬化素的人源性免疫球蛋白IgG4,也有结合并阻断骨硬化素的作用。有研究纳入120例绝经后骨质疏松患者,随机予Blosozumab每月180 mg、每2周180 mg、每2周270 mg治疗1年,发现BMD呈剂量依赖性增加,每2周270 mg组腰椎、全髋、股骨颈BMD较基线分别增加17.7%、6.7%、6.3%[25]。Blosozumab停药后1年,腰椎和全髋BMD均逐渐下降[26],提示骨硬化素单抗作用是可逆的,需与其他抗骨质疏松药物进行序贯治疗。

DKK1单抗与Wnt通路

DKK1主要由成骨细胞和成熟骨细胞表达,可与LRP5或LRP6的羧基端跨膜通道受体蛋白Kremen 1或Kremen 2结合,引起LRP5/LRP6从细胞表面内化和降解,β-catenin稳定性降低,抑制骨形成[18]。在DKK1过表达小鼠中观察到骨量下降、骨形成减慢;而DKK1缺失可致骨量增加[27]。骨质疏松患者DKK1水平与BMD呈负相关[28]。在去卵巢骨质疏松小鼠模型,予DKK1单抗治疗,发现膜内骨形成增加,股骨颈和腰椎BMD增加[29]。非人灵长类动物接受DKK1单抗治疗9个月后BMD增加[30]。DKK1单抗治疗老年雌鼠22周,BMD增加、骨微结构改善[31]。因此,DKK1单抗有望成为促进骨形成的新型骨质疏松症治疗药物。由于DKK1并非骨特异性表达,目前DKK1抗体在人类主要用于治疗骨髓瘤[32],其治疗骨质疏松症的临床研究,有待深入开展。

Wnt通路的其他靶点

LRP5失活性突变可致常染色体隐性遗传的骨质疏松-假神经胶质瘤综合征,该病骨脆性增加,成骨细胞活性下降[33]。LRP5激活性突变可致常染色显性遗传性高骨量[34]。LRP5可能是潜在的骨质疏松治疗靶点,但由于LRP5在多个组织表达,特异性激活骨组织的LRP5存在难度。此外,LRP4、SFRP4、WNT16和NOTUM也具有调控Wnt通路的潜力,有望成为骨质疏松症治疗研究的新靶点[35]

mTOR/自噬信号通路

自噬是在机体生存、发展和平衡中发挥极其重要作用、高度保守的生理过程,它可去除功能异常的细胞器和错误折叠的蛋白质,维持细胞内平衡。在应激时,自噬可吞噬不重要的细胞成分来提供能量和营养。mTOR(mammalian target of rapamycin)是进化保守的丝氨酸/苏氨酸激酶,可感受营养、生长因子和能量代谢状态,其相关通路是调节自噬的重要信号通路[36]。研究表明,自噬基因缺陷小鼠的皮质骨体积和皮质骨厚度均下降,皮质骨孔隙增加[37]。老年人存在年龄相关的骨量丢失,骨细胞自噬活性下降是其重要原因之一[3, 38]

雷帕霉素是mTOR抑制剂,可激活细胞自噬。破骨细胞缺乏mTOR调节相关蛋白时,细胞分化异常,骨量增加,用雷帕霉素抑制mTOR通路,也可抑制破骨细胞分化[38]。52只老年雄性大鼠随机接受雷帕霉素(1 mg/kg·d)或安慰剂腹腔注射12周,雷帕霉素组骨细胞自噬激活,骨细胞凋亡减少,破骨细胞数量减少,骨矿化速率加快,且雷帕霉素组腰4椎体和胫骨近端BMD、骨小梁厚度和数目均明显高于安慰剂组[39]。724例患乳腺癌的绝经后女性,按2:1随机接受芳香化酶抑制剂(依西美坦,25 mg/d)治疗或芳香化酶抑制剂与雷帕霉素(依维莫司,10 mg/d)联合治疗,在治疗6个月和12个月后,依西美坦组骨转换指标升高,联合治疗组骨转换指标下降,骨量减少低于依西美坦组[40],提示mTOR抑制剂能够抑制骨转换、增加骨量,有望成为骨质疏松症的治疗新药。

可见,随着骨质疏松症分子机制的研究深入,针对成骨细胞和破骨细胞调控通路的治疗靶点被陆续发现。新型靶向治疗药物有望通过促进骨形成或抑制骨吸收,来增加BMD、降低骨折率。然而,如何筛选骨组织特异性高的靶向治疗药物,以提高疗效与安全性,是未来需要深入研究的问题。

参考文献
[1] Rachner TD, Khosla S, Hofbauer LC. Osteoporosis:now and the future[J]. Lancet, 2011, 377: 1276–1287. DOI:10.1016/S0140-6736(10)62349-5
[2] Lewiecki EM. New targets for intervention in the treatment of postmenopausal osteoporosis[J]. Nat Rev Rheumatol, 2011, 7: 631–638. DOI:10.1038/nrrheum.2011.130
[3] Chen K, Yang YH, Jiang SD, et al. Decreased activity of osteocyte autophagy with aging may contribute to the bone loss in senile population[J]. Histochem Cell Biol, 2014, 142: 285–295. DOI:10.1007/s00418-014-1194-1
[4] Morère JF. ASCO 2013:from the rediscovery of old recipes to targeted oncology[J]. Target Oncol, 2013, 8: 157–158. DOI:10.1007/s11523-013-0292-7
[5] Khozin S, Weinstock C, Blumenthal GM, et al. Osimertinib for the treatment of metastatic epidermal growth factor T970M positive non-small cell lung cancer[J]. Ther Adv Respir Dis, 2016, 10: 549–565. DOI:10.1177/1753465816670498
[6] Ma W, Xu M, Liu Y, et al. Safety profile of combined therapy inhibiting EFGR and VEGF pathways in patients with advanced non-small-cell lung cancer:A meta-analysis of 15 phase Ⅱ/Ⅲ randomized trials[J]. Int J Cancer, 2015, 137: 409–419. DOI:10.1002/ijc.v137.2
[7] Lacey DL, Boyle WJ, Simonet WS, et al. Bench to bedside:elucidation of the OPG-RANK-RANKL pathway and the development of denosumab[J]. Nat Rev Drug Discov, 2012, 11: 401–419. DOI:10.1038/nrd3705
[8] Cummings SR, San Martin J, McClung MR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis[J]. New Engl J Med, 2009, 361: 756–765. DOI:10.1056/NEJMoa0809493
[9] Keaveny TM, McClung MR, Genant HK, et al. Femoral and vertebral strength improvements in postmenopausal women with osteoporosis treated with denosumab[J]. J Bone Miner Res, 2014, 29: 158–165. DOI:10.1002/jbmr.2024
[10] Bone HG, Wagman RB, Brandi ML, et al. 10 years of denosumab treatment in postmenopausal women with osteoporosis:results from the phase 3 randomised FREEDOM trial and open-label extension[J]. Lancet Diabetes Endocrinol, 2017, 5: 513–523. DOI:10.1016/S2213-8587(17)30138-9
[11] Brown JP, Prince RL, Deal C, et al. Comparison of the effect of denosumab and alendronate on BMD and biochemical markers of bone turnover in postmen-opausal women with low bone mass:a randomized, blinded, phase 3 trial[J]. J Bone Miner Res, 2009, 24: 153–161. DOI:10.1359/jbmr.2009.24.issue-1
[12] Kendler DL, Roux C, Benhamou CL, et al. Effects of denosumab on bone mineral density and bone turnover in postmenopausal women transitioning from alend-ronate therapy[J]. J Bone Miner Res, 2010, 25: 72–81. DOI:10.1359/jbmr.090716
[13] Baron R, Ferrari S, Russell RG. Denosumab and bisphosphonates:Different mechanisms of action and effects[J]. Bone, 2011, 48: 677–692. DOI:10.1016/j.bone.2010.11.020
[14] Ebina K, Hashimoto J, Kashii M, et al. The effects of switching daily teriparatide to oral bisphosphonates or denosumab in patients with primary osteoporosis[J]. J Bone Miner Metab, 2017, 35: 91–98. DOI:10.1007/s00774-015-0731-x
[15] Tsai JN, Uihlein AV, Lee H, et al. Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis:the DATA study randomised trial[J]. Lancet, 2013, 382: 50–56. DOI:10.1016/S0140-6736(13)60856-9
[16] Leder BZ, Tsai JN, Uihlein AV, et al. Two years of Denosumab and teriparatide administration in postmenopausal women with osteoporosis (The DATA Extension Study):a randomized controlled trial[J]. J Clin Endocrinol Metab, 2014, 99: 1694–1700. DOI:10.1210/jc.2013-4440
[17] Bone HG, Bolognese MA, Yuen CK, et al. Effects of denosumab treatment and discontinuation on bone mineral density and bone turnover markers in postmenopausal women with low bone mass[J]. J Clin Endocrinol Metab, 2011, 96: 972–980. DOI:10.1210/jc.2010-1502
[18] Rossini M, Gatti D, Adami S. Involvement of WNT/β-catenin signaling in the treatment of osteoporosis[J]. Calcif Tissue Int, 2013, 93: 121–132. DOI:10.1007/s00223-013-9749-z
[19] Rauner M, Rachner TD, Hofbauer LC. Bone formation and the Wnt signaling pathway[J]. New Engl J Med, 2016, 375: 1902. DOI:10.1056/NEJMc1609768
[20] MacNabb C, Patton D, Hayes JS. Sclerostin antibody therapy for the treatment of osteoporosis:clinical prospects and challenges[J]. J Osteoporos, 2016, 2016: 6217286.
[21] Bhadada SK, Rastogi A, Steenackers E, et al. Novel SOST gene mutation in a sclerosteosis patient and her parents[J]. Bone, 2013, 52: 707–710. DOI:10.1016/j.bone.2012.10.009
[22] McClung MR, Grauer A, Boonen S, et al. Romosozumab in postmenopausal women with low bone mineral density[J]. New Engl J Med, 2014, 370: 412–420. DOI:10.1056/NEJMoa1305224
[23] Genant HK, Engelke K, Bolognese MA, et al. Effects of Romosozumab compared with teriparatide on bone density and mass at the spine and hip in postmeno-pausal women with low bone mass[J]. J Bone Miner Res, 2017, 32: 181–187. DOI:10.1002/jbmr.2932
[24] Cosman F, Crittenden DB, Adachi JD, et al. Romosozumab treatment in postmenopausal women with osteoporosis[J]. New Engl J Med, 2016, 375: 1532–1543. DOI:10.1056/NEJMoa1607948
[25] Recker RR, Benson CT, Matsumoto T, et al. A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density[J]. J Bone Miner Res, 2015, 30: 216–224. DOI:10.1002/jbmr.2351
[26] Recknor CP, Recker RR, Benson CT, et al. The effect of discontinuing treatment with blosozumab:follow-up results of a phase 2 randomized clinical trial in postmenopausal women with low bone mineral density[J]. J Bone Miner Res, 2015, 30: 1717–1725. DOI:10.1002/jbmr.2489
[27] Glantschnig H, Hampton RA, Lu P, et al. Generation and selection of novel fully human monoclonal anti-bodies that neutralize Dickkopf-1(DKK1) inhibitory function in vitro and increase bone mass in vivo[J]. J Biol Chem, 2010, 285: 40135–40147. DOI:10.1074/jbc.M110.166892
[28] Ho-Pham LT, Nguyen SC, Tran B, et al. Cont-ributions of Caucasian-associated bone mass loci to the variation in bone mineral density in vietnamese population[J]. Bone, 2015, 76: 18–22. DOI:10.1016/j.bone.2015.03.003
[29] Glantschnig H, Scott K, Hampton R, et al. A rate-limiting role for Dickkopf-1 in bone formation and the remediation of bone loss in mouse and primate models of postmenopausal osteoporosis by an experimental therapeutic antibody[J]. J Pharmacol Exp Ther, 2011, 338: 568–578. DOI:10.1124/jpet.111.181404
[30] Glantschnig H, Hampton RA, Lu P, et al. Generation and selection of novel fully human monoclonal antibodies that neutralize Dickkopf-1(DKK1) inhibi-tory function in vitro and increase bone mass in vivo[J]. J Biol Chem, 2010, 285: 40135–40147. DOI:10.1074/jbc.M110.166892
[31] Wu Q, Li RS, Zhao Y, et al. Vaccination with DKK1-derived peptides promotes bone formation and bone mass in an aged mouse osteoporosis model[J]. Calcif Tissue Int, 2014, 95: 153–165. DOI:10.1007/s00223-014-9875-2
[32] Iyer SP, Beck JT, Stewart AK, et al. A Phase IB multicentre dose-determination study of BHQ880 in combination with anti-myeloma therapy and zoledronic acid in patients with relapsed or refractory multiple myeloma and prior skeletal-related events[J]. Br J Haematol, 2014, 167: 366–375. DOI:10.1111/bjh.2014.167.issue-3
[33] Alonso N, Soares DC, V McCloskey E, et al. Atypical femoral fracture in osteoporosis pseudoglioma syndrome associated with two novel compound heterozygous mutations in LRP5[J]. J Bone Miner Res, 2015, 30: 615–620. DOI:10.1002/jbmr.2403
[34] Niziolek PJ, Farmer TL, Cui Y, et al. High-bone-mass-producing mutations in the Wnt signaling pathway result in distinct skeletal phenotypes[J]. Bone, 2011, 49: 1010–1019. DOI:10.1016/j.bone.2011.07.034
[35] Brommage R. Genetic approaches to identifying novel osteoporosis drug targets[J]. J Cell Biochem, 2015, 116: 2139–2145. DOI:10.1002/jcb.v116.10
[36] Pierrefite-Carle V, Santucci-Darmanin S, Breuil V, et al. Autophagy in bone:self-eating to stay in balance[J]. Ageing Res Rev, 2015, 24: 206–217. DOI:10.1016/j.arr.2015.08.004
[37] Onal M, Piemontese M, Xiong J, et al. Suppression of autophagy in osteocytes mimics skeletal aging[J]. J Biol Chem, 2013, 288: 17432–17440. DOI:10.1074/jbc.M112.444190
[38] Dai Q, Xie F, Han Y, et al. Inactivation of Raptor/mTORC1 signaling in osteoclasts increases bone mass by inhibiting osteoclast differentiation in mice[J]. J Biol Chem, 2017, 292: 196–204. DOI:10.1074/jbc.M116.764761
[39] Luo D, Ren H, Li T, et al. Rapamycin reduces severity of senile osteoporosis by activating osteocyte autophagy[J]. Osteoporos Int, 2016, 27: 1093–1101. DOI:10.1007/s00198-015-3325-5
[40] Gnant M, Baselga J, Rugo HS, et al. Effect of everolimus on bone marker levels and progressive disease in bone in BOLERO-2[J]. J Natl Cancer Inst, 2013, 105: 654–663. DOI:10.1093/jnci/djt026
(收稿日期:2017-01-07)